View source: R/univariate_autoregressive_hmm_functions.R
ar_hmm_mle | R Documentation |
Maximum likelihood estimation of univariate autoregresive parameters
ar_hmm_mle( x, m, q, mu0, sigma0, gamma0, phi0, delta0 = NULL, stationary = TRUE, hessian = FALSE, steptol = 1e-06, iterlim = 100, stepmax = 100, state = NULL )
x |
Vector of observations |
m |
Number of states |
mu0 |
Vector of length m, initial values for means the white noise |
sigma0 |
Vector of length m, initial values for standard deviations |
gamma0 |
Matrix of size m x m, initial values for transition probability matrix |
phi0 |
Matrix of size m x q, initial values for autoregressive parameters |
delta0 |
Optional, vector of length m, initial values for initial distribution |
stationary |
Boolean, whether the HMM is stationary or not |
hessian |
Boolean, whether to return the inverse hessian |
state |
List of state values, if provided. 0 represents an unknown state value. |
List of results
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.