simpleSens is a package designed to make simple sensitivity analysis for unmeasured confounding, selection bias, and misclassification easy.
library(simpleSens)
There are two main types of sensitivity analysis that this package allows for:
# Calculate an E-value for unmeasured confounding
calculate_evalue(RRobs = 4, biases = list(confounding()))
#>
#> This multiple bias E-value refers simultaneously to 2 parameters:
#> RR_UY and RR_AU
#> (see documentation for definitions)
#> [1] 7.464102
# Calculate an E-value for selection bias and misclassification
calculate_evalue(RRobs = 2.5,
biases = list(selection("selected"), misclassification("outcome")))
#>
#> This multiple bias E-value refers simultaneously to 3 parameters:
#> RR_AU|S=1, RR_UY|S=1, and RR_AY*|y
#> (see documentation for definitions)
#> [1] 1.923636
# Calculate an E-value for all three available types of bias
calculate_evalue(RRobs = 1.4234,
biases = list(selection("general", "S = U"),
misclassification("exposure", outcome_rare = TRUE,
exposure_rare = TRUE),
confounding()))
#>
#> This multiple bias E-value refers simultaneously to 5 parameters:
#> RR_UY|A=0, RR_UY|A=1, RR_YA*|a, RR_UY, and RR_AU
#> (see documentation for definitions)
#> [1] 1.120531
# get sensitivity parameters for a combination of biases
get_param_info(
biases =
list(confounding(),
misclassification("exposure", exposure_rare = FALSE, outcome_rare = TRUE))
)
#> necessary.parameter argument.name bias
#> 1 RR_UY RRUY confounding
#> 2 RR_AU RRAU confounding
#> 3 RR_YA*|a RRYAa misclassification
# calculate bound with those parameters
calculate_bound(
RRUY = 2, RRAU = 1.5, RRYAa = 3,
biases =
list(confounding(),
misclassification("exposure", exposure_rare = FALSE, outcome_rare = TRUE))
)
#> [1] 3.6
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.