Description Usage Arguments Value Examples
Mixed Logistic Random Forest for Binary Data
1 2 3  | 
Y | 
 The outcome variable.  | 
x | 
 A formula string contains the predictors.  | 
random | 
 A string in lme4 format indicates the random effect model.  | 
data | 
 The data set as a data frame.  | 
initialRandomEffects | 
 The initial values for random effects.  | 
ErrorTolerance | 
 The tolerance for log-likelihood.  | 
MaxIterations | 
 The maximum iteration times for each run of PQL.  | 
ErrorTolerance0 | 
 The tolerance for eta (penalized quasi-likelihood, PQL).  | 
MaxIterations0 | 
 The maximum iteration times for PQL.  | 
verbose | 
 The option to monitor each run of PQL or not.  | 
A list contains the random forest, mixed model, and random effects. See the example below for the usage. A predict() function is also available below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | # example data (http://stats.stackexchange.com/questions/70783/how-to-assess-the-fit-of-a-binomial-glmm-fitted-with-lme4-1-0)
dat <- read.table("http://pastebin.com/raw.php?i=vRy66Bif")
library(party)
library(lme4)
source('MixRFb.r')
system.time(tmp <- MixRFb(Y=dat$true, x='factor(distance) + consequent + factor(direction) + factor(dist)', random='(1|V1)',
                          data=dat, initialRandomEffects=0,
                          ErrorTolerance=1, MaxIterations=200,
                          ErrorTolerance0=0.3, MaxIterations0=15, verbose=T))
# tmp$forest
# tmp$MixedModel
# tmp$RandomEffects
# eta
pred1 = predict.MixRF(tmp, dat, EstimateRE=TRUE)
prob = 1/(1+exp(-pred1))
res = (prob>.5)
# classification
table(res,dat$true)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.