mqcc | R Documentation |
Create an object of class 'mqcc'
to perform multivariate statistical quality control.
mqcc(data, type = c("T2", "T2.single"), center, cov,
limits = TRUE, pred.limits = FALSE,
data.name, labels, newdata, newlabels,
confidence.level = (1 - 0.0027)^p,
plot = TRUE, ...)
## S3 method for class 'mqcc'
print(x, digits = getOption("digits"), ...)
## S3 method for class 'mqcc'
plot(x,
add.stats = qcc.options("add.stats"),
chart.all = qcc.options("chart.all"),
fill = qcc.options("fill"),
label.limits = c("LCL", "UCL"),
label.pred.limits = c("LPL", "UPL"),
title, xlab, ylab, ylim, axes.las = 0,
digits = getOption("digits"),
restore.par = TRUE, ...)
data |
For subgrouped data, a list with a data frame or a matrix for each variable to monitor. Each row of the data frame or matrix refers to a sample or ”rationale” group. For individual observations, where each sample has a single observation, users can provide a list with a data frame or a matrix having a single column, or a data frame or a matrix where each rows refer to samples and columns to variables. See examples. | |||||||
type |
a character string specifying the type of chart:
| |||||||
center |
a vector of values to use for center of input variables. | |||||||
cov |
a matrix of values to use for the covariance matrix of input variables. | |||||||
limits |
a logical indicating if control limits (Phase I) must be computed (by default using | |||||||
pred.limits |
a logical indicating if prediction limits (Phase II) must be computed (by default using | |||||||
data.name |
a string specifying the name of the variable which appears on the plots. If not provided is taken from the object given as data. | |||||||
labels |
a character vector of labels for each group. | |||||||
newdata |
a data frame, matrix or vector, as for the | |||||||
newlabels |
a character vector of labels for each new group defined in the argument | |||||||
confidence.level |
a numeric value between 0 and 1 specifying the confidence level of the computed probability limits.
By default is set at | |||||||
plot |
logical. If | |||||||
add.stats |
a logical value indicating whether statistics and other information should be printed at the bottom of the chart. | |||||||
chart.all |
a logical value indicating whether both statistics for | |||||||
fill |
a logical value specifying if the in-control area should be filled with the color specified in
| |||||||
label.limits |
a character vector specifying the labels for control limits (Phase I). | |||||||
label.pred.limits |
a character vector specifying the labels for prediction control limits (Phase II). | |||||||
title |
a character string specifying the main title. Set | |||||||
xlab |
a string giving the label for the x-axis. | |||||||
ylab |
a string giving the label for the y-axis. | |||||||
ylim |
a numeric vector specifying the limits for the y-axis. | |||||||
axes.las |
numeric in {0,1,2,3} specifying the style of axis labels. See | |||||||
digits |
the number of significant digits to use when | |||||||
restore.par |
a logical value indicating whether the previous | |||||||
x |
an object of class | |||||||
... |
additional arguments to be passed to the generic function. |
Returns an object of class 'mqcc'
.
Luca Scrucca
Mason, R.L. and Young, J.C. (2002) Multivariate Statistical Process Control with Industrial Applications, SIAM.
Montgomery, D.C. (2013) Introduction to Statistical Quality Control, 7th ed. New York: John Wiley & Sons.
Ryan, T. P. (2011), Statistical Methods for Quality Improvement, 3rd ed. New York: John Wiley & Sons, Inc.
Scrucca, L. (2004). qcc: an R package for quality control charting and statistical process control. R News 4/1, 11-17.
Wetherill, G.B. and Brown, D.W. (1991) Statistical Process Control. New York: Chapman & Hall.
stats.T2
, stats.T2.single
, limits.T2
, limits.T2.single
, ellipseChart
, qcc
##
## Subgrouped data
##
data(RyanMultivar)
str(RyanMultivar)
q = mqcc(RyanMultivar, type = "T2")
summary(q)
ellipseChart(q)
ellipseChart(q, show.id = TRUE)
q = mqcc(RyanMultivar, type = "T2", pred.limits = TRUE)
# Xbar-charts for single variables computed adjusting the
# confidence level of the T^2 chart:
q1 = with(RyanMultivar,
qcc(X1, type = "xbar", confidence.level = q$confidence.level^(1/2)))
summary(q1)
q2 = with(RyanMultivar,
qcc(X2, type = "xbar", confidence.level = q$confidence.level^(1/2)))
summary(q2)
require(MASS)
# generate new "in control" data
Xnew = list(X1 = matrix(NA, 10, 4), X2 = matrix(NA, 10, 4))
for(i in 1:4)
{ x = mvrnorm(10, mu = q$center, Sigma = q$cov)
Xnew$X1[,i] = x[,1]
Xnew$X2[,i] = x[,2]
}
qq = mqcc(RyanMultivar, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)
# generate new "out of control" data
Xnew = list(X1 = matrix(NA, 10, 4), X2 = matrix(NA, 10, 4))
for(i in 1:4)
{ x = mvrnorm(10, mu = 1.2*q$center, Sigma = q$cov)
Xnew$X1[,i] = x[,1]
Xnew$X2[,i] = x[,2]
}
qq = mqcc(RyanMultivar, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)
##
## Individual observations data
##
data(boiler)
str(boiler)
q = mqcc(boiler, type = "T2.single", confidence.level = 0.999)
summary(q)
# generate new "in control" data
boilerNew = mvrnorm(10, mu = q$center, Sigma = q$cov)
qq = mqcc(boiler, type = "T2.single", confidence.level = 0.999,
newdata = boilerNew, pred.limits = TRUE)
summary(qq)
# generate new "out of control" data
boilerNew = mvrnorm(10, mu = 1.01*q$center, Sigma = q$cov)
qq = mqcc(boiler, type = "T2.single", confidence.level = 0.999,
newdata = boilerNew, pred.limits = TRUE)
summary(qq)
# provides "robust" estimates of means and covariance matrix
rob = cov.rob(boiler)
qrob = mqcc(boiler, type = "T2.single", center = rob$center, cov = rob$cov)
summary(qrob)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.