ludovikcoba/rrecsys: Environment for Evaluating Recommender Systems

Processes standard recommendation datasets (e.g., a user-item rating matrix) as input and generates rating predictions and lists of recommended items. Standard algorithm implementations which are included in this package are the following: Global/Item/User-Average baselines, Weighted Slope One, Item-Based KNN, User-Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology (Shani, et al. (2011) <doi:10.1007/978-0-387-85820-3_8>) for recommender systems using measures such as MAE, RMSE, Precision, Recall, F1, AUC, NDCG, RankScore and coverage measures. The package (Coba, et al.(2017) <doi: 10.1007/978-3-319-60042-0_36>) is intended for rapid prototyping of recommendation algorithms and education purposes.

Getting started

Package details

Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
ludovikcoba/rrecsys documentation built on May 21, 2019, 8:55 a.m.