Description Usage Arguments Value
Fits the Bayesian profile regression model using MCMC methods
1 2 3 4 5 6 7 8 9 10 11 12 13 |
niter |
number of total iterations |
nburn |
number of burn-in iterations |
X |
n by p matrix of predictor data |
Y |
n by 1 vector of continuous response data |
W |
n by q matrix of covariate data |
C |
maximum number of clusters allowed |
scaleY |
logical; if TRUE response will be centered and scaled before model fit |
DPgamma |
logical; if TRUE (default) alpha has a gamma prior, else alpha has Unif(.03, 10) prior |
varsel |
logical; if TRUE binary cluster variable selection is implemented (see Chung and Dunson 2009), default is FALSE |
priors |
list of prior hyperparameters, see package documentation for details |
sup |
logical; if TRUE (default) fits supervised model, else fits unsupervised model |
list with components
X: predictor data matrix
W: covariate data matrix
Y: response data vector
C: maximum number of allowable clusters
alpha: DP parameter estimates
mu: array of cluster means estimates
psi: cluster weights estimates
Z: cluster indicators at each iteraction
delta: regression coefficient estimates for theta (risk) and gamma (fixed effects)
sig2inv: error precision estimates
kap2inv: cluster intercept (risk) precision estimates
phi2inv: fixed effect precision estimates
rho: rho estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.