extract_vc | R Documentation |
This has functionality for simpler models from lme4
,
glmmTMB
, nlme
, and brms
.
extract_vc( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, ... ) ## S3 method for class 'merMod' extract_vc( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, ... ) ## S3 method for class 'glmmTMB' extract_vc( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, component = "cond", include_het_var = FALSE, ... ) ## S3 method for class 'lme' extract_vc( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, include_het_var = FALSE, ... ) ## S3 method for class 'brmsfit' extract_vc( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, component = NULL, include_het_var = FALSE, ... ) ## S3 method for class 'stanreg' extract_vc( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, component = NULL, ... ) ## S3 method for class 'gam' extract_vc( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, ... ) extract_variance_components( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, ... ) extract_VarCorr( model, ci_level = 0.95, ci_args = NULL, ci_scale = "sd", show_cor = FALSE, digits = 3, ... )
model |
An lme4, glmmTMB, nlme, mgcv, or brms model. |
ci_level |
Confidence level < 1, typically above 0.90. A value of 0 will
not report it (except for gam objects, which will revert to .95 due to
|
ci_args |
Additional arguments to the corresponding confint method. |
ci_scale |
A character string of 'sd' or 'var' to note the scale of the interval estimate. Default is 'sd'. at present. |
show_cor |
Return the intercept/slope correlations as a separate list
element. Default is |
digits |
Rounding. Default is 3. |
... |
Other stuff to pass to the corresponding method. |
component |
For glmmTMB objects, which of the three components 'cond' or
'zi' to select. Default is 'cond'. For brmsfit (and experimentally,
rstanarm) objects, this can filter results to a certain part of the output,
e.g. 'sigma' or 'zi' of distributional models, or a specific outcome of a
multivariate model. In this case |
include_het_var |
For models for which |
Returns a more usable (my opinion) version of variance components estimates including variance, standard deviation, the confidence interval for either, the relative proportion of variance, and all in a data frame with names that are clean and easy to use.
extract_variance_components
and extract_VarCorr
are aliases.
A data frame with output for variance components, or list that also contains the correlations of the random effects and/or the heterogeneous variances.
Right now, there are several issues with getting confidence intervals
for glmmTMB
objects
(for example, which is
actually not resolved). If you get an error or unexpected results, you
should check by running confint(my_tmb_model)
before posting an issue.
While I've attempted some minor hacks to deal with some of them, it stands
to reason that if the glmmTMB
functionality doesn't work, this function
won't either. You should be fine for standard mixed models
lme4::confint.merMod()
,
lme4::VarCorr()
,
glmmTMB::VarCorr()
,
nlme::intervals()
,
nlme::VarCorr()
,
brms::VarCorr()
,
rstanarm::VarCorr()
,
mgcv::gam.vcomp()
Other extract:
extract_cor_structure()
,
extract_fixed_effects()
,
extract_het_var()
,
extract_model_data()
,
extract_random_coefs()
,
extract_random_effects()
library(lme4) library(mixedup) lmer_mod <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy) extract_vc(lmer_mod) extract_vc(lmer_mod, ci_scale = 'var')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.