JandT_2007_sigma_sq | R Documentation |
This function performs the model-free implied variance calculation according to the following formula from Jiang & Tian (2007): \loadmathjax \mjsdeqnV = \frac2T \exp(R T) (A + B) \mjsdeqnA = \sum_i \leq 0 \frac\Delta \hatK_i2 \left( \fracP^EX (\hatK_i, T)\hatK^2_i + \fracP^EX (\hatK_j, T)\hatK^2_j \right)
\mjsdeqnB = \sum_i \leq 0 \frac\Delta \hatK_i2 \left( \fracC^EX (\hatK_i, T)\hatK^2_i + \fracC^EX (\hatK_j, T)\hatK^2_j \right) \mjsdeqn \Delta \hatK_i = \hatK_i - \hatK_j \mjsdeqnj = i-1
JandT_2007_sigma_sq(smooth_option_quotes, K_0, maturity, R)
smooth_option_quotes |
A |
K_0 |
|
maturity |
|
R |
|
Returns a numeric scalar
: the model-free implied volatility \mjseqn\sigma^2 as
per the CBOE formula above.
doi: 10.3905/jod.2007.681813 Jiang & Tian (2007) - Extracting Model-Free Volatility
library(R.MFIV) ## LOAD EXAMPLE OPTION_QUOTES nest <- option_dataset$option_quotes[[1]] ## EXTRAPOLATE DATA smooth_nest <- JandT_2007_smoothing_method(option_quotes = nest, maturity = 0.008953152, K_0 = 147, price = 147.39, R = 0.008325593, F_0 = 147.405) ## CALCULATE MFIV sigma_sq <- JandT_2007_sigma_sq(smooth_option_quotes = smooth_nest, K_0 = 147, maturity = 0.008953152, R = 0.008325593)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.