Description Usage Arguments Details Value References See Also Examples
View source: R/backpropagation.R
This function provides the backpropagation algorithm for deep architectures.
1 2 3 4 5 6 7 8 9 | backpropagation(darch, trainData, targetData,
bp.learnRate = getParameter(".bp.learnRate", rep(1, times =
length(darch@layers))),
bp.learnRateScale = getParameter(".bp.learnRateScale"),
nesterovMomentum = getParameter(".darch.nesterovMomentum"),
dropout = getParameter(".darch.dropout", rep(0, times = length(darch@layers)
+ 1), darch), dropConnect = getParameter(".darch.dropout.dropConnect"),
matMult = getParameter(".matMult"), debugMode = getParameter(".debug", F),
...)
|
darch |
An instance of the class |
trainData |
The training data (inputs). |
targetData |
The target data (outputs). |
bp.learnRate |
Learning rates for backpropagation, length is either one or the same as the number of weight matrices when using different learning rates for each layer. |
bp.learnRateScale |
The learn rate is multiplied by this value after each epoch. |
nesterovMomentum |
See |
dropout |
See |
dropConnect |
See |
matMult |
Matrix multiplication function, internal parameter. |
debugMode |
Whether debug mode is enabled, internal parameter. |
... |
Further parameters. |
The only backpropagation-specific, user-relevant parameters are
bp.learnRate and bp.learnRateScale; they can be passed to the
darch function when enabling backpropagation as the
fine-tuning function. bp.learnRate defines the backpropagation
learning rate and can either be specified as a single scalar or as a vector
with one entry for each weight matrix, allowing for per-layer learning rates.
bp.learnRateScale is a single scalar which contains a scaling factor
for the learning rate(s) which will be applied after each epoch.
Backpropagation supports dropout and uses the weight update function as
defined via the darch.weightUpdateFunction parameter of
darch.
The trained deep architecture
Rumelhart, D., G. E. Hinton, R. J. Williams, Learning representations by backpropagating errors, Nature 323, S. 533-536, DOI: 10.1038/323533a0, 1986.
Other fine-tuning functions: minimizeAutoencoder,
minimizeClassifier,
rpropagation
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.