Quality of Life

data <- data.melt.yearly %>% dplyr::filter(continent %in% c("Africa", "Asia", "Europe", "North America", "South America"))

fig.education <- data %>%
  plotly::group_by(continent) %>%
  plotly::plot_ly(x = ~year, color = ~continent, 
                  colors = c('#E41A1C', '#377EB8', '#4DAF4A', '#984EA3', '#A65628'),
                  legendgroup = ~continent, 
                  hovertext = paste("Education Discrepancy: ", data$education_discrepancy_avg, 
                                    "<br>Year: ", data$year, 
                                    "<br>Continent: ", data$continent),
                  hoverinfo = "text") %>%
  plotly::add_lines(y = ~education_discrepancy_avg, showlegend = FALSE) %>%
  plotly::layout(xaxis = list(title = "Year"), yaxis = list(title = "Education Discrepancy"))

fig.suicide <- data %>%
  plotly::group_by(continent) %>%
  plotly::plot_ly(x = ~year, color = ~continent, 
                  colors = c('#E41A1C', '#377EB8', '#4DAF4A', '#984EA3', '#A65628'),
                  legendgroup = ~continent, 
                  hovertext = paste("Suicide: ", data$suicide_avg, 
                                    "<br>Year: ", data$year, 
                                    "<br>Continent: ", data$continent),
                  hoverinfo = "text") %>%
  plotly::add_lines(y = ~suicide_avg) %>%
  plotly::layout(xaxis = list(title = "Year"), yaxis = list(title = "Suicide"))

fig.babies <- data %>%
  plotly::group_by(continent) %>%
  plotly::plot_ly(x = ~year, color = ~continent, 
                  colors = c('#E41A1C', '#377EB8', '#4DAF4A', '#984EA3', '#A65628'),
                  legendgroup = ~continent, 
                  hovertext = paste("Babies: ", data$babies_per_woman_avg, 
                                    "<br>Year: ", data$year, 
                                    "<br>Continent: ", data$continent),
                  hoverinfo = "text") %>%
  plotly::add_lines(y = ~babies_per_woman_avg, showlegend = FALSE) %>%
  plotly::layout(xaxis = list(title = "Year"), yaxis = list(title = "Babies Per Woman"))

fig.gini <- data %>%
  plotly::group_by(continent) %>%
  plotly::plot_ly(x = ~year, color = ~continent, 
                  colors = c('#E41A1C', '#377EB8', '#4DAF4A', '#984EA3', '#A65628'),
                  legendgroup = ~continent, 
                  hovertext = paste("Gini Coefficient: ", data$gini_avg, 
                                    "<br>Year: ", data$year, 
                                    "<br>Continent: ", data$continent),
                  hoverinfo = "text") %>%
  plotly::add_lines(y = ~gini_avg, showlegend = FALSE) %>%
  plotly::layout(xaxis = list(title = "Year"), yaxis = list(title = "Gini Coefficient")) 

fig <- plotly::subplot(fig.education, fig.suicide, fig.babies, fig.gini, nrows=2, titleY = TRUE, margin = c(0.085,0.01,0.1,0.1)) %>% plotly::layout(title = "Quality of Life over Time")

fig


maddoxamei/Data-Munging-Project-2 documentation built on Feb. 25, 2022, 10:02 a.m.