View source: R/createSimilarityTableSubstring.R
createSimilarityTableSubstring | R Documentation |
Calculate SUBSTRING similarity between unique.string
and (coding_index_w_codes, coding_index_without_codes)
. unique.string and coding_index are similar if coding_index is a substring of unique.string.
createSimilarityTableSubstring(
unique.string,
coding_index_w_codes,
coding_index_without_codes
)
unique.string |
a character vector (usually unique(answer)) |
coding_index_w_codes |
a data.table with columns "title" and "Code". |
coding_index_without_codes |
a character vector of additional titles |
Special function for similarity-based reasoning: creates distance data with substring-method
a list with elements
a data.table with colummns intString
, dictString.title
, dictString.Code
, dist
NULL
or a data.table with colummns intString
, dictString
, dist
see link{asDocumentTermMatrix}
trainSimilarityBasedReasoning
, createSimilarityTableWordwiseStringdist
, createSimilarityTableStringdist
, createSimilarityTableStringdist
## Prepare coding index
# write female titles beneath the male title
coding_index <- rbind(coding_index_excerpt[, list(title = bezMale, Code)],
coding_index_excerpt[, list(title = bezFemale, Code)])
# standardize titles from the coding index
coding_index <- coding_index[,title := stringPreprocessing(title)]
# drop duplicate lines, might be suboptimal because we keep each title and its associated code only a single time. This means we delete duplicates and the associated, possibly relevant codes.
coding_index <- coding_index[!duplicated(title)]
(x <- c("Abgeordneter", "Abgeordneter", "Abgeordnete", "abgeordnet", "FSJ", "FSJ2", "Industriemechaniker", "Dipl.-Ing. - Agrarwirtschaft (Landwirtschaft)"))
createSimilarityTableSubstring(unique.string = stringPreprocessing(x),
coding_index_w_codes = coding_index,
coding_index_without_codes = frequent_phrases)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.