#' Classical GLM for multiple models
#'
#' Classical GLM for multiple models
#'
# @param data,spatial,spatial_type,session_names,field_names,design_type See \code{fit_bayesglm}.
# @param valid_cols,nT,nD,var_resid,sqrtInv_all See \code{fit_bayesglm}.
# @return A list of results
#' @keywords internal
GLM_compare <- function(...){NULL}
# data, spatial, spatial_type,
# session_names, field_names, design_type,
# valid_cols, nT, nD,
# var_resid, sqrtInv_all
# ){
# nS <- length(session_names)
# nK <- length(field_names)
# nV <- get_nV(spatial)
# out <- setNames(vector('list', length=nS), session_names)
# for (ss in seq(nS)) {
# beta_hat_ss <- array(
# NA,
# dim=c(nV$total, nK, nD),
# dimnames = list(loc = 1:nV$total, field = field_names, model = seq(nD))
# )
# # Keep track of residual SD (proxy for R^2 or AIC)
# sigma2_ss <- matrix(NA, nrow=nV$total, ncol=nD)
# for (dd in seq(nD)) {
# cat(paste0('\tFitting model ',dd,'\n'))
# x <- GLM_classical(
# data, spatial, spatial_type,
# session_names, field_names, design_type,
# valid_cols[ss,], nT[ss],
# do_pw=FALSE, compute_SE=FALSE
# )
# beta_hat_ss[,,dd] <- x$estimates
# sigma2_ss[spatial$maskD,dd] <- sqrt(
# colSums(x$resids^2)/(nT[ss] - sum(spatial$maskD)) # [TO DO] check!!!
# )
# }
# #determine best model (minimum residual error)
# bestmodel_ss <- apply(sigma2_ss, 1, function(x){
# wm <- which.min(x)
# varx <- var(x, na.rm=TRUE)
# if(is.na(varx)) varx <- 0
# if(varx==0) wm <- NA
# wm
# })
# out[[ss]] <- list(
# beta_estimates = beta_hat_ss,
# bestmodel = bestmodel_ss,
# sigma2 = sigma2_ss
# )
# }
# result <- list(
# field_estimates = lapply(out, '[[', "beta_estimates"),
# result_multiple = out#,
# # mesh = mesh,
# # spde = spde,
# # mask = mask,
# # mask_orig = mask_orig, #[TO DO] return the params passed into the function instead?
# # mask_qc = mask_qc,
# # design = lapply(data, function(ss){ss$design}),
# # field_names = field_names,
# # session_names = session_names,
# # n_sess_orig = nS_orig,
# # call = match.call()
# )
# class(result) <- "CompareGLM"
# result
#}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.