Description Usage Arguments Value Examples
View source: R/convoSPAT_simulate.R
NSconvo_sim simulates data from the nonstationary model, given
mixture component kernel matrices. The function requires either a mixture
component kernel object, from the function f.mc.kernels(), or a direct
specification of the mixture component locations and mixture component
kernels.
1 2 3 4 5  | 
grid | 
 Logical; indicates of the simulated data should fall on a
grid (  | 
y.min | 
 Lower bound for the y-coordinate axis.  | 
y.max | 
 Upper bound for the y-coordinate axis.  | 
x.min | 
 Lower bound for the y-coordinate axis.  | 
x.max | 
 Upper bound for the y-coordinate axis.  | 
N.obs | 
 Number of simulated data values.  | 
sim.locations | 
 Optional   | 
mc.kernels.obj | 
 Object from the   | 
mc.kernels | 
 Optional specification of mixture component kernel matrices.  | 
mc.locations | 
 Optional specification of mixture component locations.  | 
lambda.w | 
 Scalar; tuning parameter for the weight function.  | 
tausq | 
 Scalar; true nugget variance.  | 
sigmasq | 
 Scalar; true process variance.  | 
beta.coefs | 
 Vector of true regression coefficients. Length must
match the number of columns in   | 
kappa | 
 Scalar; true smoothness.  | 
covariates | 
 Matrix with   | 
cov.model | 
 A string specifying the correlation function. Options
available in this package are: "  | 
A list with the following components:
sim.locations | 
 Matrix of locations for the simulated values.  | 
mc.locations | 
 Mixture component locations used for the simulated data.  | 
mc.kernels | 
 Mixture component kernel matrices used for the simulated data.  | 
kernel.ellipses | 
 
  | 
Cov.mat | 
 True covariance matrix (  | 
sim.data | 
 Simulated data values.  | 
lambda.w | 
 Tuning parameter for the weight function.  | 
1 2 3 4 5 6 7 8  | ## Not run: 
NSconvo_sim( grid = TRUE, y.min = 0, y.max = 5, x.min = 0,
x.max = 5, N.obs = 20^2, sim.locations = NULL, mc.kernels.obj = NULL,
mc.kernels = NULL, mc.locations = NULL, lambda.w = NULL,
tausq = 0.1, sigmasq = 1, beta.coefs = 4, kappa = NULL,
covariates = rep(1,N.obs), cov.model = "exponential" )
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.