knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%",
  echo = TRUE, 
  cache = FALSE, 
  message = FALSE
)

The arcstats package allows to generate summaries of the minute-level physical activity (PA) data. The default parameters are chosen for the Actigraph activity counts collected with a wrist-worn device; however, the package can be used for all minute-level PA data with the corresponding timestamps vector.

Below, we demonstrate the use of arcstats with the attached, exemplary minute-level Actigraph PA counts data.

Installation

You can install the released version of arcstats from GitHub. Note you may need to install devtools package if not yet installed (the line commented below).

# install.packages("devtools")
devtools::install_github("martakarass/arcstats")

Documentation

A PDF with detailed documentation of all methods can be accessed here.

Using arcstats package to compute physical activity summaries

Reading PA data

Four CSV data sets with minute-level activity counts data are attached to the arcstats package. The data file names are stored in extdata_fnames.

library(arcstats)
library(data.table)
library(dplyr)
library(lubridate)
library(ggplot2)

## Read one of the data sets
fpath <- system.file("extdata", extdata_fnames[1], package = "arcstats")
dat   <- as.data.frame(fread(fpath))
rbind(head(dat, 3), tail(dat, 3))

The data columns are:

## Plot activity counts
ggplot(dat, aes(x = ymd_hms(timestamp), y = vectormagnitude)) + 
  geom_line(size = 0.3, alpha = 0.8) + 
  labs(x = "Time", y = "Activity counts") + 
  theme_gray(base_size = 10) + 
  scale_x_datetime(date_breaks = "1 day", date_labels = "%b %d")

Computing summaries with activity_stats method

acc    <- dat$vectormagnitude
acc_ts <- ymd_hms(dat$timestamp)

activity_stats(acc, acc_ts)
library(knitr)
library(kableExtra)
tbl_styl_f <- function(x) kable_styling(x, font_size = 14)
out <- activity_stats(acc, acc_ts)
# tbl_1 <- kable(out[, 1:6],   table.attr = 'class="myTable"') %>% tbl_styl_f(.)
tbl_1 <- kable(out[, 1:6]) %>% tbl_styl_f(.)
tbl_2 <- kable(out[, 7:10]) %>% tbl_styl_f(.)
tbl_3 <- kable(out[, 11:14]) %>% tbl_styl_f(.)
tbl_1; tbl_2; tbl_3

Output explained

To explain activity_stats method output, we define activity count, active/non-active minute, and active/non-active bout.

Meta information:

Summaries of PA volumes metrics:

Summaries of PA fragmentation metrics:

Additionalactivity_stats method options

Summarizing PA only in a chosen time-of-day subset

The subset_minutes argument allows to specify subset of a day's minutes where activity summaries should be computed. There are 1440 minutes in a 24-hour day where 1 denotes 1st minute of the day (from 00:00 to 00:01), and 1440 denotes the last minute (from 23:59 to 00:00).

Here, we summarize PA observed between 12:00 AM and 6:00 AM.

subset_12am_6am <- 1 : (6 * 1440/24)
activity_stats(acc, acc_ts, subset_minutes = subset_12am_6am) 
out <- activity_stats(acc, acc_ts, subset_minutes = subset_12am_6am) 
tbl_1 <- kable(out[, 1:6]) %>% tbl_styl_f(.)
tbl_2 <- kable(out[, 7:10]) %>% tbl_styl_f(.)
tbl_3 <- kable(out[, 11:14]) %>% tbl_styl_f(.)
tbl_1; tbl_2; tbl_3

By default, column names have a suffix added to denote that a subset of minutes was used (here, _0to6only). This can be disabled by setting adjust_out_colnames to FALSE.

subset_12am_6am = 1 : (6/24 * 1440)
subset_6am_12pm = (6/24 * 1440 + 1) : (12/24 * 1440) 
subset_12pm_6pm = (12/24 * 1440 + 1) : (18/24 * 1440) 
subset_6pm_12am = (18/24 * 1440 + 1) : (24/24 * 1440) 
out <- rbind(
  activity_stats(acc, acc_ts, subset_minutes = subset_12am_6am, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_6am_12pm, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_12pm_6pm, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_6pm_12am, adjust_out_colnames = FALSE))
rownames(out) <- c("12am-6am", "6am-12pm", "12pm-6pm", "6pm-12am")
out
tbl_1 <- kable(out[, 1:6]) %>% tbl_styl_f(.)
tbl_2 <- kable(out[, 7:10]) %>% tbl_styl_f(.)
tbl_3 <- kable(out[, 11:14]) %>% tbl_styl_f(.)
tbl_1; tbl_2; tbl_3

Summarizing PA with a chosen time-of-day excluded

The exclude_minutes argument allows to specify subset of a day's minutes excluded for computing activity summaries.

Here, we summarize PA while excluding observations between 11:00 PM and 5:00 AM.

subset_11pm_5am <- c(
  (23 * 1440/24 + 1) : 1440,   ## 11:00 PM - midnight
  1 : (5 * 1440/24)            ## midnight - 5:00 AM
) 
activity_stats(acc, acc_ts, exclude_minutes = subset_11pm_5am) 
out <- activity_stats(acc, acc_ts, exclude_minutes = subset_11pm_5am) 
tbl_1 <- kable(out[, 1:6]) %>% tbl_styl_f(.)
tbl_2 <- kable(out[, 7:10]) %>% tbl_styl_f(.)
tbl_3 <- kable(out[, 11:14]) %>% tbl_styl_f(.)
tbl_1; tbl_2; tbl_3

Summarizing PA excluding in-bed time

The in_bed_time and out_bed_time arguments allow to provide day-specific in-bed periods to be excluded from analysis.

Here, we summarize PA excluding in-bed time estimated by ActiLife software.

ActiLife-estimated in-bed data

The ActiLife-estimated in-bed data file is attached to the arcstats package. The sleep data columns relevant are,

## Read sleep details data file
SleepDetails_fname <- "BatchSleepExportDetails_2020-05-01_14-00-46.csv"
SleepDetails_fpath <- system.file("extdata", SleepDetails_fname, package = "arcstats")
SleepDetails       <- as.data.frame(fread(SleepDetails_fpath))

## Filter sleep details data to keep data correcponding to current counts data file
SleepDetails_sub <-
    SleepDetails %>%
    filter(`Subject Name` == "ID_1") %>%
    mutate(`In Bed Time`  = mdy_hms(`In Bed Time`),
           `Out Bed Time` = mdy_hms(`Out Bed Time`)) %>%
    select(`Subject Name`, `In Bed Time`, `Out Bed Time`) 
SleepDetails_sub

Finally, we use in/out-bed time POSIXct vectors in activity_stats method.

in_bed_time  <- SleepDetails_sub[, "In Bed Time"]
out_bed_time <- SleepDetails_sub[, "Out Bed Time"]

activity_stats(acc, acc_ts, in_bed_time = in_bed_time, out_bed_time = out_bed_time) 
out <- activity_stats(acc, acc_ts, in_bed_time = in_bed_time, out_bed_time = out_bed_time) 
tbl_1 <- kable(out[, 1:6]) %>% tbl_styl_f(.)
tbl_2 <- kable(out[, 7:10]) %>% tbl_styl_f(.)
tbl_3 <- kable(out[, 11:14]) %>% tbl_styl_f(.)
tbl_1; tbl_2; tbl_3

Components of activity_stats method

The primary method activity_stats is composed of several steps implemented in their respective functions. Below, we demonstrate how to produce activity_stats results step by step with these functions.

We reuse the objects:

df <- data.frame(acc = acc, acc_ts = acc_ts)
rbind(head(df, 3), tail(df, 3))

Expand the length of minute-level AC vector to integer number of full 24-hour periods by NA-padding with midnight_to_midnight

Here, collected data cover total of 7*24*1440 = 10080 minutes (from 2018-07-13 10:00:00 to 2018-07-20 09:59:00), but spans 8*24*1440 = 11520 minutes of full midnight-to-midnight days (from 2018-07-13 00:00:00 to 2018-07-20 23:59:00).

acc <- midnight_to_midnight(acc = acc, acc_ts = acc_ts)

## Vector length on non NA-obs, vector length after acc 
c(length(acc[!is.na(acc)]), length(acc))

Get wear/non-wear flag with get_wear_flag

Function get_wear_flag computes wear/non-wear flag (1/0) for each minute of activity counts data. Method implements wear/non-wear detection algorithm proposed by Choi et al. (2011).

wear_flag <- get_wear_flag(acc)

## Proportion of wear time across the days
wear_flag_mat <- matrix(wear_flag, ncol = 1440, byrow = TRUE)
round(apply(wear_flag_mat, 1, sum, na.rm = TRUE) / 1440, 3)

Get valid/non-valid day flag with get_valid_day_flag

Function get_valid_day_flag computes valid/non-valid day flag (1/0) for each minute of activity counts data.

Here, 4 out of 8 days have more that 10% (144 minutes) of missing data.

valid_day_flag <- get_valid_day_flag(wear_flag)

## Compute number of valid days
valid_day_flag_mat <- matrix(valid_day_flag, ncol = 1440, byrow = TRUE)
apply(valid_day_flag_mat, 1, mean, na.rm = TRUE)

Impute missing data with impute_missing_data

Here, all four valid days have 100% of wear time. We hence demonstrate the impute_missing_data method by artificially replacing 1h (4%) of a valid day with non-wear and running impute_missing_data function then.

Function impute_missing_data imputes missing data from the "average day profile". An "average day profile" is computed as a minute-wise average of AC across valid days.

## Copies of original objects for the purpose of demonstration
acc_cpy  <- acc
wear_flag_cpy <- wear_flag

## Artificially replace 1h (4%) of a valid day with non-wear 
repl_idx <- seq(from = 1441, by = 1, length.out = 60)
acc_cpy[repl_idx] <- 0
wear_flag_cpy[repl_idx] <- 0

## Impute data for minutes identified as non-wear in days identified as valid
acc_cpy_imputed <- impute_missing_data(acc_cpy, wear_flag_cpy, valid_day_flag)

## Compare mean activity count on valid days before and after imputation
c(mean(acc_cpy[which(valid_day_flag == 1)]), 
  mean(acc_cpy_imputed[which(valid_day_flag == 1)]))

Create PA characteristics with summarize_PA

Finally, method summarize_PA computes physical all PA characteristics.

Here, we summarize PA with the default parameters, across all valid days.

summarize_PA(acc, acc_ts, wear_flag, valid_day_flag) 
out <- summarize_PA(acc, acc_ts, wear_flag, valid_day_flag) 
tbl_1 <- kable(out[, 1:6]) %>% tbl_styl_f(.)
tbl_2 <- kable(out[, 7:10]) %>% tbl_styl_f(.)
tbl_3 <- kable(out[, 11:14]) %>% tbl_styl_f(.)
tbl_1; tbl_2; tbl_3

It returns the same results as the activity_stats function:

activity_stats(dat$vectormagnitude, ymd_hms(dat$timestamp))
out <- activity_stats(dat$vectormagnitude, ymd_hms(dat$timestamp))
tbl_1 <- kable(out[, 1:6]) %>% tbl_styl_f(.)
tbl_2 <- kable(out[, 7:10]) %>% tbl_styl_f(.)
tbl_3 <- kable(out[, 11:14]) %>% tbl_styl_f(.)
tbl_1; tbl_2; tbl_3


martakarass/arcstats documentation built on Sept. 10, 2020, 5:29 a.m.