knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%",
  echo = TRUE, 
  cache = FALSE, 
  message = FALSE
)

Codecov test coverage CRAN status R-CMD-check

The arctools package allows to generate summaries of the minute-level physical activity (PA) data. The default parameters are chosen for the Actigraph activity counts collected with a wrist-worn device; however, the package can be used for other minute-level PA data with the corresponding timepstamps vector.

Below, we demonstrate the use of arctools with the attached, exemplary minute-level Actigraph PA counts data.

Installation

You can install the released version of arctools from GitHub. Note you may need to install devtools package if not yet installed (the line commented below).

# install.packages("devtools")
devtools::install_github("martakarass/arctools")

Documentation

A PDF with detailed documentation of all methods can be accessed here.

Using arctools package to compute physical activity summaries

Reading PA data

Four CSV data sets with minute-level activity counts data are attached to the arctools package. The data file names are stored in extdata_fnames object that becomes available once the arctools package is loaded.

library(arctools)
library(data.table)
library(dplyr)
library(lubridate)
library(ggplot2)

## Read one of the data sets
fpath <- system.file("extdata", extdata_fnames[1], package = "arctools")
dat   <- as.data.frame(fread(fpath))
rbind(head(dat, 3), tail(dat, 3))

The data columns are:

## Plot activity counts
## Format timestamp data column from character to POSIXct object
ggplot(dat, aes(x = ymd_hms(timestamp), y = vectormagnitude)) + 
  geom_line(size = 0.3, alpha = 0.8) + 
  labs(x = "Time", y = "Activity counts") + 
  theme_gray(base_size = 10) + 
  scale_x_datetime(date_breaks = "1 day", date_labels = "%b %d")

Computing summaries with activity_stats method

acc    <- dat$vectormagnitude
acc_ts <- ymd_hms(dat$timestamp)

activity_stats(acc, acc_ts)

Output explained

To explain activity_stats method output, we first define the terms activity count, active/non-active minute, active/non-active bout, and valid day.

Meta information:

Summaries of PA volumes metrics:

Summaries of PA fragmentation metrics:

Additionalactivity_stats method options

Summarizing PA within a fixed set of minutes only

The subset_minutes argument allows to specify a subset of a day's minutes where activity summaries should be computed. There are 1440 minutes in a 24-hour day where 1 denotes 1st minute of the day (from 00:00 to 00:01), and 1440 denotes the last minute (from 23:59 to 00:00).

Here, we summarize PA observed between 12:00 AM and 6:00 AM.

subset_12am_6am <- 1 : (6 * 1440/24)
activity_stats(acc, acc_ts, subset_minutes = subset_12am_6am) 

By default, column names have a suffix added to denote that a subset of minutes was used (here, _0to6only). This can be disabled by setting adjust_out_colnames to FALSE.

subset_12am_6am = 1 : (6/24 * 1440)
subset_6am_12pm = (6/24 * 1440 + 1) : (12/24 * 1440) 
subset_12pm_6pm = (12/24 * 1440 + 1) : (18/24 * 1440) 
subset_6pm_12am = (18/24 * 1440 + 1) : (24/24 * 1440) 
out <- rbind(
  activity_stats(acc, acc_ts, subset_minutes = subset_12am_6am, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_6am_12pm, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_12pm_6pm, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_6pm_12am, adjust_out_colnames = FALSE))
rownames(out) <- c("12am-6am", "6am-12pm", "12pm-6pm", "6pm-12am")
out

Summarizing PA within a subset of weekdays only

The subset_weekdays argument allows to specify days of a week within which activity summaries are to be computed; it takes values between 1 (Sunday) to 7 (Saturday). Default is NULL (all days of a week are used).

Here, we summarize PA within weekday days only. Note that in the method output, the n_days and n_valid_days columns only count the days from the selected week days subset; for example, below, n_days number of unique day dates in data is 6 despite the range of data collection without subsetting ranges 8 days.

# day of a week indices 2,3,4,5,6 correspond to Mon,Tue,Wed,Thu,Fri 
subset_weekdays <- c(2:6)
activity_stats(acc, acc_ts, subset_weekdays = subset_weekdays) 

Note the subset_weekdays argument can be combined with other arguments, i.e. subset_minutes to subset of a day's minutes where activity summaries should be computed.

# day of a week indices 7,1 correspond to Sat,Sun
subset_weekdays <- c(7,1)
activity_stats(acc, acc_ts, subset_weekdays = subset_weekdays, subset_minutes = subset_6am_12pm) 

Summarizing PA with a fixed set of minutes excluded

The exclude_minutes argument allows specifying a subset of a day's minutes excluded for computing activity summaries.

Here, we summarize PA while excluding observations between 11:00 PM and 5:00 AM.

subset_11pm_5am <- c(
  (23 * 1440/24 + 1) : 1440,   ## 11:00 PM - midnight
  1 : (5 * 1440/24)            ## midnight - 5:00 AM
) 
activity_stats(acc, acc_ts, exclude_minutes = subset_11pm_5am) 

Summarizing PA with in-bed time excluded

The in_bed_time and out_bed_time arguments allow to provide day-specific in-bed periods to be excluded from analysis.

Here, we summarize PA excluding in-bed time estimated by ActiLife software.

ActiLife-estimated in-bed data

The ActiLife-estimated in-bed data file is attached to the arctools package. The sleep data columns include:

## Read sleep details data file
SleepDetails_fname <- "BatchSleepExportDetails_2020-05-01_14-00-46.csv"
SleepDetails_fpath <- system.file("extdata", SleepDetails_fname, package = "arctools")
SleepDetails       <- as.data.frame(fread(SleepDetails_fpath))

## Filter sleep details data to keep ID1 file 
SleepDetails_sub <-
    SleepDetails %>%
    filter(`Subject Name` == "ID_1") %>%
    select(`Subject Name`, `In Bed Time`, `Out Bed Time`) 
str(SleepDetails_sub)

We transform dates stored as character into POSIXct object, and then use in/out-bed dates vectors in activity_stats method.

in_bed_time  <- mdy_hms(SleepDetails_sub[, "In Bed Time"])
out_bed_time <- mdy_hms(SleepDetails_sub[, "Out Bed Time"])

activity_stats(acc, acc_ts, in_bed_time = in_bed_time, out_bed_time = out_bed_time) 

Components of activity_stats method

The primary method activity_stats is composed of several steps implemented in their respective functions. Below, we demonstrate how to produce activity_stats results step by step with these functions.

We reuse the objects:

df <- data.frame(acc = acc, acc_ts = acc_ts)
rbind(head(df, 3), tail(df, 3))

Expand the length of minute-level AC vector to full 24-hour periods with midnight_to_midnight

Here, collected data cover total of 7*24*1440 = 10080 minutes (from 2018-07-13 10:00:00 to 2018-07-20 09:59:00), but spans 8*24*1440 = 11520 minutes of full midnight-to-midnight days (from 2018-07-13 00:00:00 to 2018-07-20 23:59:00).

acc <- midnight_to_midnight(acc = acc, acc_ts = acc_ts)

## Vector length on non NA-obs, vector length after acc 
c(length(acc[!is.na(acc)]), length(acc))

Get wear/non-wear flag with get_wear_flag

Function get_wear_flag computes wear/non-wear flag (1/0) for each minute of activity counts data. Method implements wear/non-wear detection algorithm closely following that of Choi et al. (2011). See ?get_wear_flag for more details and function arguments.

wear_flag <- get_wear_flag(acc)

## Proportion of wear time across the days
wear_flag_mat <- matrix(wear_flag, ncol = 1440, byrow = TRUE)
round(apply(wear_flag_mat, 1, sum, na.rm = TRUE) / 1440, 3)

Get valid/non-valid day flag with get_valid_day_flag

Function get_valid_day_flag computes valid/non-valid day flag (1/0) for each minute of activity counts data. See ?get_valid_day_flag for more details and function arguments.

Here, 4 out of 8 days have more than 10% (144 minutes) of missing data.

valid_day_flag <- get_valid_day_flag(wear_flag)

## Compute number of valid days
valid_day_flag_mat <- matrix(valid_day_flag, ncol = 1440, byrow = TRUE)
apply(valid_day_flag_mat, 1, mean, na.rm = TRUE)

Impute missing data with impute_missing_data

Function impute_missing_data imputes missing data in valid days based on the "average day profile", a minute-wise average of wear-time AC across valid days. See ?get_valid_day_flag for more details and function arguments.

## Copies of original objects for the purpose of demonstration
acc_cpy  <- acc
wear_flag_cpy <- wear_flag

## Artificially replace 1h (4%) of a valid day with non-wear 
repl_idx <- seq(from = 1441, by = 1, length.out = 60)
acc_cpy[repl_idx] <- 0
wear_flag_cpy[repl_idx] <- 0

## Impute data for minutes identified as non-wear in days identified as valid
acc_cpy_imputed <- impute_missing_data(acc_cpy, wear_flag_cpy, valid_day_flag)

## Compare mean activity count on valid days before and after imputation
c(mean(acc_cpy[which(valid_day_flag == 1)]), 
  mean(acc_cpy_imputed[which(valid_day_flag == 1)]))

Create PA characteristics with summarize_PA

Finally, method summarize_PA computes PA summaries. Similarly as activity_stats, it accepts arguments to subset/exclude minutes. See ?activity_stats for more details and function arguments.

summarize_PA(acc, acc_ts, wear_flag, valid_day_flag) 

It returns the same results as the activity_stats function:

activity_stats(dat$vectormagnitude, ymd_hms(dat$timestamp))

Citation

citation("arctools")


martakarass/arctools documentation built on Oct. 29, 2022, 1:50 a.m.