library("sf")
library("tidyverse")
## ================= Obtain data-rich shapefiles from TIGER
current_counties_info_url <-
read_csv("data-raw/current_counties_info_url.csv")
download.file(url = current_counties_info_url$url, destfile = "data-raw/info_counties.zip")
unzip(zipfile = "data-raw/info_counties.zip", exdir = "data-raw/info_counties")
info_us_counties <- read_sf("data-raw/info_counties/")
colnames(info_us_counties)
st_geometry(info_us_counties) <- NULL
info_us_counties <- as_tibble(info_us_counties)
colnames(info_us_counties)
## ================= Obtain 1:20,000,000 shapefiles from census
current_counties_shapefile_url <-
read_csv("data-raw/current_counties_shapefile_url.csv")
## Get 1:20,000,000 files
download.file(url = current_counties_shapefile_url$url, destfile = "data-raw/shapefiles_counties.zip")
unzip(zipfile = "data-raw/shapefiles_counties.zip", exdir = "data-raw/shapefiles_counties")
shp_us_counties <- read_sf("data-raw/shapefiles_counties/")
shp_us_counties <- shp_us_counties %>%
full_join(info_us_counties) %>%
mutate(STATEFP = as.numeric(STATEFP))
## ================= Combine with FIPS code data
fips_codes <- read_csv("data-raw/US-FIPS-Codes.csv")
shp_us_counties <- shp_us_counties %>%
left_join(fips_codes)
## ================= Combine with data-rich TIGER info
colnames(shp_us_counties) <- tolower(colnames(shp_us_counties))
shp_us_counties <- shp_us_counties %>%
rename(
county.name = namelsad,
county.abbreviated = name,
county.fp = countyfp,
county.ns = countyns,
state.fips = statefp,
state.ns = statens,
geo.id = geoid
) %>%
select(
-mtfcc,
-funcstat,
-intptlat,
-intptlon,
-awater,
-aland,
-metdivfp,
-cbsafp,
-csafp,
-classfp,
-lsad
) %>%
select(
county.name,
county.abbreviated,
county.fp,
county.ns,
state.fips,
state.short.name,
state.name,
state.ns,
everything()
)
## ================= Combine with regions and divisions of states
regions_and_divisions_of_states <-
read_csv("data-raw/regions_and_divisions_of_states.csv")
shp_us_counties <- shp_us_counties %>%
left_join(regions_and_divisions_of_states)
# ## ================= Save contiguous only counties
#
# shp_contiguous_us_counties <- shp_us_counties %>%
# filter(contiguous.united.states == TRUE)
#
# save(shp_contiguous_us_counties, file = "data/shp_contiguous_us_counties.rdata")
## ================= Save all counties
shp_all_us_counties <- shp_us_counties
save(shp_all_us_counties, file = "data/shp_all_us_counties.rdata")
## ======================================== Remove files
file.remove("data-raw/info_counties.zip")
file.remove("data-raw/shapefiles_counties.zip")
unlink("data-raw/info_counties", recursive = T)
unlink("data-raw/shapefiles_counties", recursive = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.