title: "Subgroup analysis" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{my-vignette} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8}


knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(metafor)
initial.data <- read.csv(file="../data/secondary-outcomes.csv")
head(initial.data)
dat <- escalc(measure="MD", data=initial.data, m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, slab=study)

Subgroup analysis

Data unclear:

Tidal volume (>6 vs <=6mL/kg)

PEEP (<0 vs 0)

Anesthesia type (TIVA vs inhaled)

anes.tiva <- rma(yi, vi, data=dat, subset=(anesthesia=="tiva" & outcome1=="pO2"))
anes.inhaled <- rma(yi, vi, data=dat, subset=(anesthesia=="inhaled" & outcome1=="pO2"))
anes.comp <- data.frame(estimate = c(coef(anes.tiva), coef(anes.inhaled)), stderror = c(anes.tiva$se, anes.inhaled$se),
                       meta = c("tiva","inhaled"), tau2 = round(c(anes.tiva$tau2, anes.inhaled$tau2),3))
rma(estimate, sei=stderror, mods = ~ meta, method="FE", data=anes.comp, digits=3)


martinlaw/dcv documentation built on Jan. 3, 2023, 5:08 a.m.