pwesim | R Documentation |
This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.
pwesim(t=seq(1,2,by=0.1),taur=1.2,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5, rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4), rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6), rate10=rate11,rate20=rate10,rate30=rate31, rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5), tchange=c(0,1),type1=1,type0=1, rp21=0.5,rp20=0.5, n=1000,rn=200,testtype=c(1,2,3,4))
t |
a vector of time points |
taur |
Recruitment time |
u |
Piecewise constant recuitment rate |
ut |
Recruitment intervals |
pi1 |
Allocation probability for the treatment group |
rate11 |
Hazard before crossover for the treatment group |
rate21 |
Hazard after crossover for the treatment group |
rate31 |
Hazard for time to crossover for the treatment group |
rate41 |
Hazard after crossover for the treatment group for complex case |
rate51 |
Hazard after crossover for the treatment group for complex case |
ratec1 |
Hazard for time to censoring for the treatment group |
rate10 |
Hazard before crossover for the control group |
rate20 |
Hazard after crossover for the control group |
rate30 |
Hazard for time to crossover for the control group |
rate40 |
Hazard after crossover for the control group for complex case |
rate50 |
Hazard after crossover for the control group for complex case |
ratec0 |
Hazard for time to censoring for the control group |
tchange |
A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as |
type1 |
Type of crossover in the treatment group |
type0 |
Type of crossover in the control group |
rp21 |
re-randomization prob in the treatment group |
rp20 |
re-randomization prob in the control group |
n |
number of subjects |
rn |
number of simulations |
testtype |
types of test statistics. |
The hazard functions corresponding to rate11
,...,rate51
,ratec1
, rate10
,...,rate50
,ratec0
are all piecewise constant function taking the form λ(t)=∑_{j=1}^m λ_j I(t_{j-1}≤ t<t_j), where λ_1,…,λ_m are the corresponding elements of the rates and t_0,…,t_{m-1} are the corresponding elements of tchange, t_m=∞. Note that all the rates must have the same tchange
.
outr |
test statistics at each time point and each simulation run |
Version 1.0 (7/19/2016)
Xiaodong Luo
Luo, et al. (2017)
pwe
,rpwe
,qpwe
,ovbeta
,innervar
taur<-1.2 u<-c(1/taur,1/taur) ut<-c(taur/2,taur) r11<-c(1,0.5) r21<-c(0.5,0.8) r31<-c(0.7,0.4) r41<-r51<-r21 rc1<-c(0.5,0.6) r10<-c(1,0.7) r20<-c(0.5,1) r30<-c(0.3,0.4) r40<-r50<-r20 rc0<-c(0.2,0.4) ar<-pwesim(t=seq(1,2,by=0.1),taur=taur,u=u,ut=ut,pi1=0.5, rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1, rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0, tchange=c(0,1),type1=1,type0=1, n=300,rn=10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.