library(MMRFBiolinks)
devtools::load_all(".")
library(TCGAbiolinks) library(SummarizedExperiment) library(dplyr) library(DT) library(png) library(grid)
MMRFGDC_prepare
Reads the data downloaded and prepare it into an R object (A summarizedExperiment or a data.frame)
Arguments | Description -----|----- query|A query for GDCquery function save|Save result as RData object it it is TRUE save.filename|Name of the file to be save if empty an automatic will be created directory|Directory/Folder where the data was downloaded. Default: GDCdata summarizedExperiment|Create a summarizedExperiment if it is TRUE (Default TRUE) remove.files.prepared|Remove the files read if it is TRUE (Default FALSE). This argument will be considered only if save argument is set to true add.gistic2.mut|If a list of genes (gene symbol) is given, columns with gistic2 results from GDAC firehose (hg19) and a column indicating if there is or not mutation in that gene (hg38) (TRUE or FALSE - use the MAF file for more information) will be added to the sample matrix in the summarized Experiment object If mut.pipeline|If add.gistic2.mut is not NULL this field will be taken in consideration. Four separate variant calling pipelines are implemented for GDC data harmonization. Options: muse, varscan2, somaticsniper, MuTect2. For more information: https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/ mutant_variant_classification|List of mutant_variant_classification that will be consider a sample mutant or not. Default: "Frame_Shift_Del", "Frame_Shift_Ins", "Missense_Mutation", "Nonsense_Mutation", "Splice_Site", "In_Frame_Del", "In_Frame_Ins", "Translation_Start_Site", "Nonstop_Mutation"
Example:
# You can define a list of samples to query and download providing relative TCGA barcodes. listSamples <- c("MMRF_2473","MMRF_2111", "MMRF_2362","MMRF_1824", "MMRF_1458","MRF_1361", "MMRF_2203","MMRF_2762", "MMRF_2680","MMRF_1797") # Query platform Illumina HiSeq with a list of barcode query <- GDCquery(project = "MMRF-COMMPASS", data.category = "Transcriptome Profiling", data.type = "Gene Expression Quantification", experimental.strategy = "RNA-Seq", workflow.type="HTSeq - FPKM", barcode = listSamples)
# Download GDCdownload(query)
# Prepare expression matrix with geneID in the rows and samples (barcode) in the columns MMRnaseqSE <- MMRFGDC_prepare(query, save = TRUE , save.filename = "RNASeqSE.rda" , directory = "GDCdata", summarizedExperiment = TRUE)
MMRnaseqSE<-MMRnaseqSE.filt
# For gene expression if you need to see a boxplot correlation and AAIC plot to define outliers you can run MMRFdataPrepro <- TCGAanalyze_Preprocessing(MMRnaseqSE)
MMRFdataPrepro<-MMRFdataPrepro.filt
knitr::include_graphics('img/PreprocessingOutput.png')
MMRFclin <- MMRFqueryGDC_clinic(type = "clinical")
MMRFclin<-clin.mm
#MMRnaseqSE is a matrix of Gene expression (genes in rows, samples in cols) from MMRFGDC_prepare tokenStop<- 1 tabSurvKMcomplete <- NULL for( i in 1: round(nrow(MMRFdataPrepro)/500)){ message( paste( i, "of ", round(nrow(MMRFdataPrepro)/100))) tokenStart <- tokenStop tokenStop <-100*i tabSurvKM <- TCGAanalyze_SurvivalKM (MMRFclin, MMRFdataPrepro, Genelist = rownames(MMRFdataPrepro)[tokenStart:tokenStop], Survresult = F,ThreshTop=0.76,ThreshDown=0.33) tabSurvKMcomplete <- rbind(tabSurvKMcomplete,tabSurvKM) } tabSurvKMcomplete <- tabSurvKMcomplete[tabSurvKMcomplete$pvalue < 0.01,]
tabSurvKMcomplete %>% datatable(options = list(scrollX = TRUE, keys = TRUE))
You can easily analyze data using following functions:
draws plot of the Best Overall Response to the Treatment.
The useful arguments for MMRFRG_GetBorPlot are:
Arguments | Description -----|----- therapyname|is a string containing the list of therapy for filtering data treat.resp|is a data.frame of clinical information downloaded from MMRF-Commpass Researcher Gateway topN|is the top number of case count that the user want to deal dpi|is the figure dpi filename|is the name of png file width|is the image width height|is the image height
Examples:
MMRFRG_GetBorPlot(clinMMGateway)
knitr::include_graphics('img/MMRF_TreatResp.png')
MMRFRG_GetBorPlot(clinMMGateway,"Bortezomib")
knitr::include_graphics('img/MMRF_TreatRespFilt.png')
MMRFRG_TimeBorPlot
draws plot correlating the time to Best Overall Response (BO) leveraging the BO classification
The useful arguments for MMRFRG_TimeBorPlot are:
Arguments | Description -----|----- ttime|is the time expressed as cycles or days treat.resp|is a data.frame of clinical information downloaded from MMRF-Commpass Researcher Gateway dpi|is the figure dpi filename|is the name of png file width|is the image width height|is the image height
Example:
MMRFRG_TimeBorPlot(clinMMGateway,"Dexamethasone","days")
knitr::include_graphics('img/TimeBestOverall_responsePlot_1.png')
MMRFRG_TreatBorDurationPlot
draws plot of Treatment duration (cycle/days) for the Best Overall Response filtered by Therapy classification.
Arguments | Description -----|----- therapyname|is a string containing the therapy for filtering data ttime|is the time expressed as cycles or days treat.resp|is a data.frame of clinical information downloaded from MMRF-Commpass Researcher Gateway line|is a string containing the line of therapy bor| is a string containing the type of BO Response (e.g.'Partial Response','Complete Response', etc. ) dpi|is the figure dpi filename|is the name of png file width|is the image width height|is the image height
Example:
MMRFRG_TreatBorDurationPlot(clinMMGateway,"Bortezomib",ttime="cycles",bor="PR",height=10, width=10)
knitr::include_graphics('img/Trt_DurationPlot_1.png')
MMRFRG_VariantCountPlot
draw plot of annoteted variants by Best Overall Response and Therapy class
Arguments | Description -----|----- variant.ann|is the dataframe of annotated variants downloaded from MMRF-Commpass Researcher Gateway trt|is the dataframe containing information about treatment-response downloaded from MMRF-Commpass Researcher Gateway treat.resp|is a data.frame of clinical information downloaded from MMRF-Commpass Researcher Gateway filenm|is the name of the png file. If filenm is Null, the plot is draw but it is not saved. width| Image width height|Image height topN|is the top number of variant count
Example:
Variant cout grouped by Best Overall Response and Treatment: (top variant count=80)
summary.var<-MMRFRG_VariantCountPlot(variant.ann,trt,topN=80,filenm=NULL)
knitr::include_graphics('img/MMRFvariantCount.png')
MMRFRG_GetIDSamplebyVariant
Filter patient information by dbSNP variant
Arguments | Description -----|----- variant|is the vector of dbSNP ID variant.ann|is the data.frame of annotated variants downloaded from MMRF-Commpass Researcher Gateway treat.resp|is a data.frame of clinical information downloaded from MMRF-Commpass Researcher Gateway patient|is the dataframe of the patient clinical data downloaded from MMRF-Commpass Researcher Gateway
Example:
Get patients having variants in "variant":
variant <- c("rs2157615","rs61731685","rs372409204","rs111362472") patient.var<-MMRFRG_GetIDSamplebyVariant(variant.ann,patient,variant)
MMRFRG_SurvivalKM
Perform Survival analysis focused on patients having the before selected variants
Arguments | Description -----|----- patient|is the data.frame of the patient clinical data downloaded from MMRF-Commpass Researcher Gateway trt|is the data.frame of the patient clinical data (i.e. treatment-response) downloaded from MMRF-Commpass Researcher Gateway FilterBy| Column with groups to plot. This is a mandatory field. risk.table| show or not the risk table legend| Legend title of the figure xlim| x axis limits e.g. xlim = c(0, 1000). Present narrower X axis, but not affect survival estimates. main| main title of the plot labels| labels of the plot ylab| y axis text of the plot xlab| x axis text of the plot filename| The name of the pdf file. color| Define the colors/Pallete for lines. width| Image width height| Image height pvalue| show p-value of log-rank test conf.range| show confidence intervals for point estimates of survival curves. dpi| Figure quality
Example:
MMRFRG_SurvivalKM(patient.var, trt, FilterBy="treatment", filename="SurvivalKM", conf.range = FALSE, risk.table=FALSE, color = c("Dark2"))
knitr::include_graphics('img/MMRFSurvival.png')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.