library(TCGAbiolinks) library(MMRFBiolinks) library(SummarizedExperiment) library(dplyr) library(DT)
MMRFGDC_prepare allows the user to prepare the gene expression data into an R object for futher analyses.The useful arguments for preparing data from MMRF-CoMMpass Project data are:
| Argument | Description | |------------------------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | query | A query for GDCquery function | | save | Save result as RData object? | | save.filename | Name of the file to be save if empty an automatic will be created | | directory | Directory/Folder where the data was downloaded. Default: GDCdata | | summarizedExperiment | Create a summarizedExperiment? Default TRUE (if possible) | | remove.files.prepared | Remove the files read? Default: FALSE This argument will be considered only if save argument is set to true | | add.gistic2.mut | If a list of genes (gene symbol) is given, columns with gistic2 results from GDAC firehose (hg19) and a column indicating if there is or not mutation in that gene (hg38) (TRUE or FALSE - use the MAF file for more information) will be added to the sample matrix in the summarized Experiment object. | | mut.pipeline | If add.gistic2.mut is not NULL this field will be taken in consideration. Four separate variant calling pipelines are implemented for GDC data harmonization. Options: muse, varscan2, somaticsniper, MuTect2. For more information: https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/ | | mutant_variant_classification | List of mutant_variant_classification that will be consider a sample mutant or not. Default: "Frame_Shift_Del", "Frame_Shift_Ins", "Missense_Mutation", "Nonsense_Mutation", "Splice_Site", "In_Frame_Del", "In_Frame_Ins", "Translation_Start_Site", "Nonstop_Mutation" |
Example:
query.mm<-GDCquery(project = "MMRF-COMMPASS", data.category = "Transcriptome Profiling", data.type = "Gene Expression Quantification", workflow.type="HTSeq - FPKM", barcode = c("MMRF_2473","MMRF_2111", "MMRF_2362","MMRF_1824")) GDCdownload(query.mm, method = "api", files.per.chunk = 10) data <- MMRFGDC_prepare(query.mm)
data <- mm.exp.bar
datatable(as.data.frame(colData(data)), options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), rownames = FALSE) # Only first 100 to make faster datatable(assay(data)[1:100,], options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), rownames = TRUE) rowRanges(data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.