knitr::opts_chunk$set( collapse = TRUE, warning=FALSE, message=FALSE, comment = "#>" )
devtools::load_all(".")
library(dplyr) library(DT) library(ggplot2) library(stringr) library(ggpubr)
For semplification purposes, we visualize a subset of columns and rows.
impact.table.all<-MMRFVariant_GetImpact(variant.ann,ListSNPs.all$dbSNP) impact.table.all.sub<-dplyr::select(impact.table.all,dbSNP,Gene,REF,ALT,feature,Effect, SIFT_Impact,Polyphen_Impact,Impact) head(unique(impact.table.all.sub),10)
knitr::include_graphics("imgs/ImpactTableAll.png")
The six gene-signature including the genes KRAS, NRAS, TP53, FAM46C, DIS3, BRAF have a high recurrence rate and may play important roles in the pathogenesis, progression and prognosis of MM. This case study shows how MMRFVariant performs the integrative analysis of variants in that six gene-signature to prioritize pathogenic variants involved in the MM.
The Figure below shows the workflow that describes graphically step by step the procedure carried out to perform this case of study.
knitr::include_graphics("imgs/workflow.png")
ListGene<-c("KRAS", "NRAS","TP53","FAM46C","DIS3","BRAF")
variants.plot<-MMRFVariant_PlotVariantsbyGene(variant.ann,ListGene,height=15, width=20,topN=50, filenm="PlotVariantsbyGene_heatmap")
knitr::include_graphics("imgs/PlotVariantsbyGene_heatmap.png")
ListSNPs<-MMRFVariant_GetVariantsbyGene(variant.ann, ListGene) head(ListSNPs,20)
datatable(as.data.frame(ListSNPs), options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), rownames = FALSE)
plot.impact.effect<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs,topN=50,height=30, width=15, filenm="PlotbyEffectImpact")
knitr::include_graphics("imgs/PlotbyEffectImpact.png")
impact.table<-MMRFVariant_GetImpact(variant.ann,ListSNPs)
For semplification purposes, we visualize a subset of columns and rows
impact.table.sub<-dplyr::select(impact.table,dbSNP,Gene,REF,ALT,feature,Effect, SIFT_Impact,Polyphen_Impact,Impact) head(unique(impact.table.sub),10)
knitr::include_graphics("imgs/ImpactTable.png")
ListSNPs_NRAS<-MMRFVariant_GetVariantsbyGene(variant.ann,"NRAS")
datatable(as.data.frame(ListSNPs_NRAS), options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), rownames = FALSE)
We take into account only the top five SNPs by occurrence (see
impact.table_NRAS<-MMRFVariant_GetImpact(variant.ann,ListSNPs_NRAS$dbSNP)
For semplification purposes, we visualize a subset of columns and rows
impact.table_NRAS<-dplyr::select(impact.table_NRAS,dbSNP,Gene,REF,ALT, feature,Effect,SIFT_Impact,Polyphen_Impact,Impact) head(unique(impact.table_NRAS),10)
knitr::include_graphics("imgs/ImpactTable_NRAS.png")
plot.impact.effect_NRAS<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs_NRAS,topN=50,height=30, width=15, filenm="PlotbyEffectImpact_NRAS")
knitr::include_graphics("imgs/PlotbyEffectImpact_NRAS.png")
(!) SNPs in
NRAS_SNPs.treat<-c("rs11554290","rs121913254","rs121913237", "rs121913255") NRAS_surv.treatment<-MMRFVariant_SurvivalKM(patient, trt, variant.ann, NRAS_SNPs.treat, FilterBy="Treatment", filename="KM_Plot_NRAS_treatment", xlim = c(100,3000), height=22, width=12, conf.range = FALSE, color = c("Dark2")) NRAS_surv.Effect<-MMRFVariant_SurvivalKM(patient, #no significant results are found (all pvalue>0.05) trt, variant.ann, ListSNPs_NRAS, FilterBy="Effect", filename="KM_Plot_NRAS_effect", xlim = c(100,100), height=22, width=12, conf.range = FALSE, color = c("Dark2")) # see (*) NRAS_SNPs.stage<-c("rs121913254") NRAS_surv.Stage<-MMRFVariant_SurvivalKM(patient, trt, variant.ann, NRAS_SNPs.stage, FilterBy="Stage", filename="KM_Plot_NRAS_stage", xlim = c(100,3000), height=22, width=12, conf.range = FALSE, color = c("Dark2")) # see (*) NRAS_SNPs.bestresp<-c("rs11554290","rs121913254","rs121434595", "rs121913237") NRAS_surv.Bestresp<-MMRFVariant_SurvivalKM(patient, trt, variant.ann, NRAS_SNPs.bestresp, FilterBy="Bestresp", filename="KM_Plot_NRAS_bestresp", xlim = c(100,3000), height=22, width=12, conf.range = FALSE, color = c("Dark2")) # see (*) NRAS_surv.Gender<-MMRFVariant_SurvivalKM(patient, #All SNPs have pvalue<=0.05 trt, variant.ann, ListSNPs_NRAS, FilterBy="Gender", filename="KM_Plot_NRAS_gender", xlim = c(100,3000), height=22, width=12, conf.range = FALSE, color = c("Dark2")) # see (*) NRAS_surv.Biotype<-MMRFVariant_SurvivalKM(patient, #All SNPs have have only a group with respect to FilterBy parameter trt, variant.ann, ListSNPs_NRAS, FilterBy="Biotype", filename="KM_Plot_NRAS_biotype", xlim = c(100,3000), height=22, width=12, conf.range = FALSE, color = c("Dark2")) # see (*) NRAS_SNPs.ethnicity<-c("rs11554290","rs121913254","rs121913237") NRAS_surv.Ethnicity<-MMRFVariant_SurvivalKM(patient, trt, variant.ann, NRAS_SNPs.ethnicity, FilterBy="Ethnicity", filename="KM_Plot_NRAS_ethnicity", xlim = c(100,3000), height=22, width=12, conf.range = FALSE, color = c("Dark2"))
knitr::include_graphics("imgs/KM_Surv_ethnicity.png")
knitr::include_graphics("imgs/KM_Surv_bestresp.png")
knitr::include_graphics("imgs/KM_Surv_stage.png")
knitr::include_graphics("imgs/KM_Surv_treatment.png")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.