# Load package
devtools::load_all(".")
# ---- Super Output Area to LAD lookup ----
lookup_soa01_lgd14 <-
geographr::lookup_soa01_lgd14
# ---- Population estimates in SOAs ----
query_url <-
query_urls |>
dplyr::filter(data_set == "pop_soa") |>
dplyr::pull(query_url)
httr::GET(
query_url,
httr::write_disk(tf <- tempfile(fileext = ".xlsx"))
)
soa_pop <-
readxl::read_excel(tf, sheet = "Flat")
# Select and rename vars
soa_pop <-
soa_pop |>
dplyr::filter(area == "1. Super Output Areas" & year == "2019" & gender == "All persons") |>
tidyr::pivot_wider(names_from = age, values_from = MYE) |>
dplyr::select(
soa01_code = area_code,
population = `All ages`
) |>
dplyr::distinct()
# ---- Aggregate IMD into LADs ----
niimd_soa <-
imd2017_northern_ireland_soa01 |>
# We don't have IMD scores for NI so just set them as zero
dplyr::mutate(
IMD_score = 0,
Income_score = 0,
Employment_score = 0,
Education_score = 0,
Health_score = 0,
Crime_score = 0,
Access_score = 0,
Environment_score = 0
) |>
dplyr::left_join(soa_pop, by = "soa01_code") |>
dplyr::left_join(lookup_soa01_lgd14, by = "soa01_code")
# Aggregate into LADs
niimd_lad <-
niimd_soa |> aggregate_scores(IMD_score, IMD_rank, IMD_decile, lgd14_code, population)
niimd_lgd14_income <- niimd_soa |> aggregate_scores(Income_score, Income_rank, Income_decile, lgd14_code, population)
niimd_lgd14_employ <- niimd_soa |> aggregate_scores(Employment_score, Employment_rank, Employment_decile, lgd14_code, population)
niimd_lgd14_edu <- niimd_soa |> aggregate_scores(Education_score, Education_rank, Education_decile, lgd14_code, population)
niimd_lgd14_health <- niimd_soa |> aggregate_scores(Health_score, Health_rank, Health_decile, lgd14_code, population)
niimd_lgd14_crime <- niimd_soa |> aggregate_scores(Crime_score, Crime_rank, Crime_decile, lgd14_code, population)
niimd_lgd14_barriers <- niimd_soa |> aggregate_scores(Access_score, Access_rank, Access_decile, lgd14_code, population)
niimd_lgd14_env <- niimd_soa |> aggregate_scores(Environment_score, Environment_rank, Environment_decile, lgd14_code, population)
niimd_lgd14_income <- niimd_lgd14_income |> dplyr::rename(Income_Proportion = Proportion, Income_Extent = Extent, Income_Score = Score)
niimd_lgd14_employ <- niimd_lgd14_employ |> dplyr::rename(Employment_Proportion = Proportion, Employment_Extent = Extent, Employment_Score = Score)
niimd_lgd14_edu <- niimd_lgd14_edu |> dplyr::rename(Education_Proportion = Proportion, Education_Extent = Extent, Education_Score = Score)
niimd_lgd14_health <- niimd_lgd14_health |> dplyr::rename(Health_Proportion = Proportion, Health_Extent = Extent, Health_Score = Score)
niimd_lgd14_crime <- niimd_lgd14_crime |> dplyr::rename(Crime_Proportion = Proportion, Crime_Extent = Extent, Crime_Score = Score)
niimd_lgd14_barriers <- niimd_lgd14_barriers |> dplyr::rename(Access_Proportion = Proportion, Access_Extent = Extent, Access_Score = Score)
niimd_lgd14_env <- niimd_lgd14_env |> dplyr::rename(Environment_Proportion = Proportion, Environment_Extent = Extent, Environment_score = Score)
imd2017_northern_ireland_lgd14 <-
niimd_lad |>
dplyr::left_join(niimd_lgd14_income, by = "lgd14_code") |>
dplyr::left_join(niimd_lgd14_employ, by = "lgd14_code") |>
dplyr::left_join(niimd_lgd14_edu, by = "lgd14_code") |>
dplyr::left_join(niimd_lgd14_health, by = "lgd14_code") |>
dplyr::left_join(niimd_lgd14_crime, by = "lgd14_code") |>
dplyr::left_join(niimd_lgd14_barriers, by = "lgd14_code") |>
dplyr::left_join(niimd_lgd14_env, by = "lgd14_code") |>
# Don't have scores for NI so drop these columns
dplyr::select(-dplyr::ends_with("Score"))
# Save output to data/ folder
usethis::use_data(imd2017_northern_ireland_lgd14, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.