knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "60%" )
The goal of ecan is to support ecological analysis.
install.packages("ecan") # development # install.packages("remotes") remotes::install_github("matutosi/ecan")
You can use almost the same functionality in shiny.
https://matutosi.shinyapps.io/ecanvis/ .
You can read docs in https://matutosi.github.io/ecan/
library(ecan) library(vegan) library(dplyr) library(stringr) library(tibble) library(ggplot2) data(dune) data(dune.env) df <- table2df(dune) %>% dplyr::left_join(tibble::rownames_to_column(dune.env, "stand")) sp_dammy <- tibble::tibble("species" = colnames(dune), "dammy_1" = stringr::str_sub(colnames(dune), 1, 1), "dammy_6" = stringr::str_sub(colnames(dune), 6, 6)) df <- df %>% dplyr::left_join(sp_dammy) df
div <- shdi(df) %>% dplyr::left_join(select_one2multi(df, "stand")) group <- "Management" div_index <- "s" div %>% ggplot(aes(x = .data[[group]], y = .data[[div_index]])) + geom_boxplot(outlier.shape = NA) + # do not show outer point geom_jitter(height = 0, width = 0.1)
ind_val(df, group = "Moisture", row_data = TRUE) ind_val(df, group = "Management") ind_val(df, group = "Use") ind_val(df, group = "Manure")
library(ggdendro) library(dendextend) cls <- cluster(dune, c_method = "average", d_method = "euclidean") ggdendro::ggdendrogram(cls) indiv <- "stand" group <- "Use" ggdendro::ggdendrogram(cls_add_group(cls, df, indiv, group)) col <- cls_color(cls, df, indiv, group) cls <- cls_add_group(cls, df, indiv, group) %>% stats::as.dendrogram() labels_colors(cls) <- gray(0) plot(cls) dendextend::colored_bars(colors = col, cls, group, y_shift = 0, y_scale = 3) par(new = TRUE) plot(cls)
ord_dca <- ordination(dune, o_method = "dca") ord_pca <- df %>% df2table() %>% ordination(o_method = "pca") ord_dca_st <- ord_extract_score(ord_dca, score = "st_scores") ord_dca_st %>% ggplot(aes(DCA1, DCA2, label = rownames(.))) + geom_text() indiv <- "species" group <- "dammy_1" ord_pca_sp <- ord_add_group(ord_pca, score = "sp_scores", df, indiv, group) ord_pca_sp %>% ggplot(aes(PC1, PC2, label = rownames(.))) + geom_point(aes(col = .data[[group]]), alpha = 0.4, size = 7) + geom_text() + theme_bw()
Toshikazu Matsumura (2022) Ecological analysis tools with R. https://github.com/matutosi/ecan/.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.