magieR | R Documentation |
magieR Run magic with R
magieR(x, ...)
## S4 method for signature 'ANY'
magieR(
x,
genes = NULL,
knn = 5,
knn.max = NULL,
decay = 1,
t = 3,
npca = 100,
solver = "exact",
t.max = 20,
knn.dist.method = "euclidean",
verbose = 1,
n.jobs = 1,
seed = NULL,
...
)
## S4 method for signature 'SingleCellExperiment'
magieR(x, assay = "logcounts", altExpName = "magic", ...)
## S4 method for signature 'Seurat'
magieR(x, slot = "data", assayName = "magic", ...)
x |
A matrix with genes as columns and observations as rows. Alternatively, a SingleCellExperiment or a Seurat object. For the SingleCellExperiment and Seurat methods, further arguments to pass to the ANY method. |
genes |
character or integer vector, default: NULL vector of column names or column indices for which to return smoothed data If 'all_genes' or NULL, the entire smoothed matrix is returned |
knn |
int, optional, default: 5 number of nearest neighbors on which to compute bandwidth |
knn.max |
int, optional, default: NULL maximum number of neighbors for each point. If NULL, defaults to 3*knn |
decay |
int, optional, default: 1 sets decay rate of kernel tails. If NULL, alpha decaying kernel is not used |
t |
int, optional, default: 3 power to which the diffusion operator is powered sets the level of diffusion. If 'auto', t is selected according to the Procrustes disparity of the diffused data.' |
npca |
number of PCA components that should be used; default: 100. |
solver |
str, optional, default: 'exact' Which solver to use. "exact" uses the implementation described in van Dijk et al. (2018). "approximate" uses a faster implementation that performs imputation in the PCA space and then projects back to the gene space. Note, the "approximate" solver may return negative values. |
t.max |
int, optional, default: 20 Maximum value of t to test for automatic t selection. |
knn.dist.method |
string, optional, default: 'euclidean'. recommended values: 'euclidean', 'cosine' Any metric from 'scipy.spatial.distance' can be used distance metric for building kNN graph. |
verbose |
'int' or 'boolean', optional (default : 1) If 'TRUE' or '> 0', print verbose updates. |
n.jobs |
'int', optional (default: 1) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n.cpus + 1 + n.jobs) are used. Thus for n_jobs = -2, all CPUs but one are used |
seed |
int or 'NULL', random state (default: 'NULL') |
assay |
An integer scalar or string specifying the assay of |
altExpName |
A string specifying the alternative Experiment where the resulting magic matrix is stored in. See SingleCellExperiment::altExps |
slot |
A string specifying the slot of |
assayName |
A string specifying the new Assay where the resulting magic matrix is stored in. |
Maximilian Heeg
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.