knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The mFilter package implements several time series filters useful for smoothing and extracting trend and cyclical components of a time series. The routines are commonly used in economics and finance, however they should also be interest to other areas. Currently, Christiano-Fitzgerald, Baxter-King, Hodrick-Prescott, Butterworth, and trigonometric regression filters are included in the package.
You can install the released version of mFilter from CRAN with:
install.packages("mFilter")
The development version can be installed with:
devtools::install_github("mbalcilar/mFilter")
This is a basic example which shows you how to do Butterworth filtering:
library(mFilter) data(unemp) unemp.bw <- bwfilter(unemp) plot(unemp.bw) unemp.bw1 <- bwfilter(unemp, drift=TRUE) unemp.bw2 <- bwfilter(unemp, freq=8,drift=TRUE) unemp.bw3 <- bwfilter(unemp, freq=10, nfix=3, drift=TRUE) unemp.bw4 <- bwfilter(unemp, freq=10, nfix=4, drift=TRUE)
par(mfrow=c(2,1),mar=c(3,3,2,1),cex=.8) plot(unemp.bw1$x, main="Butterworth filter of unemployment: Trend, drift=TRUE",col=1, ylab="") lines(unemp.bw1$trend,col=2) lines(unemp.bw2$trend,col=3) lines(unemp.bw3$trend,col=4) lines(unemp.bw4$trend,col=5) legend("topleft",legend=c("series", "freq=10, nfix=2", "freq=8, nfix=2", "freq=10, nfix=3", "freq=10, nfix=4"), col=1:5, lty=rep(1,5), ncol=1)
plot(unemp.bw1$cycle, main="Butterworth filter of unemployment: Cycle,drift=TRUE", col=2, ylab="", ylim=range(unemp.bw3$cycle,na.rm=TRUE)) lines(unemp.bw2$cycle,col=3) lines(unemp.bw3$cycle,col=4) lines(unemp.bw4$cycle,col=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.