S.Y.Weibull: Survival function for conditionally Weibull random variable...

Description Usage Arguments

View source: R/survival_funcs.R

Description

If !correlated: Y \sim Weibull(shape=p, rate=λ)
If correlated: Y \sim Weibull(shape=p, rate=λ \cdot k^{p}) \quad K \sim Gamma(a, b)

Usage

1
S.Y.Weibull(t, parameters, a, b, epsilon, correlated)

Arguments

t

A number or vector at which to evaluate the density function

parameters

A list of the two parameters of the Weibull distribution p and lambda before the re-parameterization described for k in f.Weibull.

a

The shape parameter for gamma distribution where in f.Weibull, k ~ Gamma(gamma_shape, gamma_rate).

b

The shape parameter for gamma distribution where in f.Weibull, k ~ Gamma(gamma_shape, gamma_rate).

epsilon

A float, the lower bound for support of Y

correlated

If FALSE, then this is just a regular Weibull density that you could get with integrating dweibull or exact survival function. If TRUE, then include the frailty parameterization marginalizing over k in f.Weibull.


mbannick/survDeconvolution documentation built on Sept. 30, 2020, 9:22 a.m.