bvar: Bayesian Vector Autoregression

View source: R/bvar.R

bvarR Documentation

Bayesian Vector Autoregression

Description

Bayesian Vector Autoregression

Bayesian Vector Autoregression

Usage

bpvar(Data, plag=1,draws=5000,burnin=5000,prior="NG",SV=TRUE,h=0,thin=1,
             hyperpara=NULL,eigen=FALSE,
             Ex=NULL,cons=FALSE,trend=FALSE,applyfun=NULL,cores=NULL,verbose=TRUE)

bvar(Data, plag=1,draws=5000,burnin=5000,prior="NG",SV=TRUE,h=0,thin=1,
             hyperpara=NULL,eigen=FALSE,
            Ex=NULL,cons=FALSE,trend=FALSE,applyfun=NULL,cores=NULL,verbose=TRUE)

Arguments

Data

Data in matrix form

plag

number of lags

draws

number of saved draws.

burnin

number of burn-ins.

prior

which prior

SV

If set to TRUE stochastic volatility is enabled.

h

holdout-sample.

thin

thinning factor

hyperpara

hyperparameter set

eigen

should eigenvalues be computed?

Ex

exogenous variables to add to the model

cons

If set to TRUE a constant is included.

trend

If set to TRUE a trend is included.

applyfun

parallelization

cores

number of cores

verbose

verbosity option


mboeck11/BTSM documentation built on Oct. 9, 2022, 9:14 p.m.