#' Example datasets
#'
#' @name wevid.datasets
#' @docType data
#' @usage NULL
#' @format Each dataset consists of a data frame with the following variables:
#' \itemize{
#' \item prior.p: Prior probabilities of case status.
#' \item posterior.p: Posterior probabilities of case status.
#' \item y: Case-control status.
#' }
#' @source \url{http://www.homepages.ed.ac.uk/pmckeigu/preprints/classify/wevidtutorial.html}
#' @keywords datasets
NULL
#' The \pkg{wevid} package comes with the following dataset:
#' \itemize{
#' \item \code{cleveland} is based on cross-validated prediction of coronary
#' disease in the Cleveland Heart Study (297 observations).
#' }
#' @usage NULL
#' @rdname wevid.datasets
"cleveland"
#' \itemize{
#' \item \code{pima} is based on cross-validated prediction of diabetes
#' in Pima Native Americans (768 observations).
#' }
#'
#' @usage NULL
#' @rdname wevid.datasets
"pima"
#' \itemize{
#' \item \code{fitonly} is based on cross-validated prediction of colorectal
#' cancer from fecal immunochemical test (FIT) only in Michigan (242
#' observations). As most controls and some cases have have zero values
#' in the FIT test, to fit densities to the sampled values of weight of
#' evidence in controls and cases it is necessary to specify spike-slab
#' mixtures.
#' }
#'
#' @usage NULL
#' @rdname wevid.datasets
"fitonly"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.