The goal of MeghaMCSE is to caclulate performance criteria measures such as bias, relative bias, mean squared error, root mean squared error etc. for results from simulation studies. In addition to calculating the performance measures, the package also calculates associated Monte Carlo Standard Errors.
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("meghapsimatrix/MeghaMCSE")
This is a basic example which shows you how to solve a common problem:
library(MeghaMCSE)
library(tidyverse)
library(broom)
library(kableExtra)
set.seed(20191228)
# function to create normally distributed data for each group to run t test
generate_dat <- function(n = 50, effect_x){
dat <- tibble(group_1 = rnorm(n, 0, 1),
group_2 = rnorm(n, effect_x, 1))
return(dat)
}
# function to calculate t-test, pulls out estimate of the mean difference, p val and ci
estimate_t <- function(sim_dat){
res <- tidy(t.test(sim_dat$group_2, sim_dat$group_1)) %>%
select(estimate, p_val = p.value, ci_low = conf.low, ci_high = conf.high)
return(res)
}
# generating 1000 iterations
results <-
rerun(1000, {
dat <- generate_dat(effect_x = .5)
estimate_t(dat)
}) %>%
bind_rows()
# running calc_mcse
calc_mcse(estimates = results$estimate, true_param = .5, K = nrow(results), perfm_criteria = c("bias", "variance", "mse", "rmse", "relative bias", "relative mse"))
#> bias bias_mcse var var_mcse mse mse_mcse
#> 1 -0.002331351 4.068566e-05 0.04068566 0.001834095 0.0406911 0.001831553
#> rmse rmse_mcse rel_bias rel_bias_mcse rel_mse rel_mse_mcse
#> 1 0.2017203 0.004539833 0.9953373 0.01275706 0.1627644 0.0009157767
calc_mcse(estimates = results$p_val, true_param = .5, alpha = .05, K = nrow(results), lower_bound = results$ci_low, upper_bound = results$ci_high, perfm_criteria = c("rejection rate", "coverage", "width"))
#> rej_rate rej_rate_mcse coverage coverage_mcse width width_mcse
#> 1 0.688 0.01465114 0.951 0.006892024 0.7914277 0.001793593
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.