library(clubSandwich)
library(robumeta)
library(metafor)
library(tidyverse)
# JEP: CTRL + Shift + L to load all package functions
# (equivalent to sourcing entire R/ directory)
source("R/S3_methods.R")
source("R/helpers.R")
source("R/plot_wildmeta.R")
source("R/Wald_test_wildmeta.R")
# cmd shift l not working :(
# metafor -----------------------------------------------------------------
# no intercept
full_model<- rma.mv(yi = d ~ 0 + study_type + hrs + test,
V = V,
random = ~ study_type| study,
data = SATcoaching)
C_mat <- constrain_equal(1:3, coefs = coef(full_model))
constraints <- C_mat
R <- 12
# JAMES sometimes this throws convergence issues -
# so something like safely or something? - and output the # of bootstraps successfully run in waldtest
boots <- run_cwb(full_model,
C_mat,
R = 99)
# JEP: Show the observed test statistic also
plot(boots, fill = "darkred", alpha = 0.6)
# need to figure out how to make Wald_test_cwb talk to run_cwb :D
# JEP: One way to do this would be to make the results of Wald_test_cwb()
# include the bootstrap distribution, the test statistic, the p-value,
# with a special class of CWB_Wald or something.
# And then write a print.CWB_Wald() method to show just the results of the test,
# a plot.CWB_Wald() method to make the graph, etc.
Wald_test_cwb(full_model,
C_mat,
R = 99)
# compare to club CR2
Wald_test(full_model,
C_mat,
vcov = "CR2")
#intercept
full_model <- rma.mv(yi = d ~ study_type + hrs + test,
V = V,
random = ~ study_type| study,
data = SATcoaching)
C_mat <- constrain_zero(2:3, coefs = coef(full_model))
# sometimes this throws convergence issues -
# so something like safely or something?
boots <- run_cwb(full_model,
C_mat,
R = 99)
plot(boots, fill = "darkred", alpha = 0.6)
Wald_test_cwb(full_model,
C_mat,
R = 99)
# robumeta ----------------------------------------------------------------
# no intercept
full_model <- robu(d ~ 0 + study_type + hrs + test,
studynum = study,
var.eff.size = V,
small = FALSE,
data = SATcoaching)
C_mat <- constrain_equal(1:3, coefs = full_model$b.r)
boots <- run_cwb(full_model,
C_mat,
R = 12)
plot(boots, fill = "darkred", alpha = 0.6)
check <- Wald_test_cwb(full_model,
C_mat,
R = 12)
Wald_test(full_model,
C_mat,
vcov = "CR2")
# intercept
full_model <- robu(d ~ study_type + hrs + test,
studynum = study,
var.eff.size = V,
small = FALSE,
data = SATcoaching)
C_mat <- constrain_zero(2:3, coefs = full_model$b.r)
boots <- run_cwb(full_model,
C_mat,
R = 99)
plot(boots, fill = "darkred", alpha = 0.6)
Wald_test_cwb(full_model,
C_mat,
R = 99)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.