euptf-package | R Documentation |
euptf is a set of hydraulic pedotransfer functions trained on the European HYdropedological Data Inventory. It allows point estimation of soil water content at saturation (THS), field capacity (FC, pF 2.5) and wilting point (WP, pF 4.2) and of saturated hydraulic conductivity (KS). It can also return parameter estimations of the (Mualem-)van Genuchten model describing the soil water retention and unsaturated hydraulic conductivity curves (MRC and HCC).
Package: | euptf |
Type: | Package |
Version: | 1.4 |
Date: | 2016-03-09 |
License: | GPL-3 |
euptf contains 15 PTFs predicting soil hydraulic properties from a variety of input data, in an hierarchical way. The PTFs can all be run through a unique interface: predict.ptf
. The PTFs can be accessed with function data
. See their names in the table below.
Other features include utilities to choose the right PTF according to available data (ChoosePTF
), obtain texture classes (psd2classFAO_MOD
, psd2classUS
), run the (Mualem-)van Genuchten model (MV
) and an example dataset (ptf.data
).
PTF name | Input | Method | Output |
PTF01 : | FAO_MOD+T/S | RT | THS |
PTF02 : | FAO_MOD+T/S+OC | RT | THS |
PTF03 : | USDA+T/S | RT | THS |
PTF04 : | PSD+T/S+OC | RT | THS |
PTF05 : | PSD+T/S+OC+BD | LRt | THS |
PTF06 : | PSD+T/S+BD+pH | LRt | THS |
PTF07 : | FAO_MOD+T/S | RT | FC |
PTF08 : | USDA+T/S | RT | FC |
PTF09 : | PSD+OC | LRt | FC |
PTF10 : | FAO_MOD+T/S | RT | WP |
PTF11 : | USDA+T/S | RT | WP |
PTF12 : | PSD+OC | LRt | WP |
PTF13 : | FAO_MOD+T/S | RT | log10(KS) |
PTF14 : | FAO_MOD+T/S+OC | RT | log10(KS) |
PTF15 : | USDA+T/S | RT | log10(KS) |
PTF16 : | PSD+T/S+OC | RT | log10(KS) |
PTF17 : | PSD+T/S+pH+CEC | LR | log10(KS) |
PTF18 : | FAO_MOD+T/S | cPTF | MRC+HCC |
PTF19 : | USDA+T/S | cPTF | MRC+HCC |
PTF20 : | PSD+OC+pH+CEC | LRt | MRC |
PTF21 : | PSD+T/S+OC+BD | LR | MRC |
PTF22 : | PSD+T/S+OC+BD+pH | LRt2 | MRC |
T/S: topsoil/subsoil distinction, FAO_MOD: modified FAO texture classes (5 classes for mineral soils and an organic class), USDA: USDA-SCS texture classes and an organic class, PSD: particle size distribution (sand, silt, clay %), OC: organic carbon (%), BD: bulk density (g cm^(-3)), pH: soil pH in water, CEC: cation exchange capacity (meq (100 g)^(-1)).
cPTF: class PTF, RT: regression tree, LR: linear regression, LRt: linear regression with transformed variables and interactions, LRt2: linear regression with transformed variables.
MRC: moisture retention curve (parameters of van Genuchten model), HCC: hydraulic conductivity curve (parameters of Mualem-van Genuchten model), THS: saturated water content, FC: water content at field capacity (pF 2.5 or h=330 cm), WP: water content at wilting point (pF 4.2 or h=15848 cm), log10(KS): base 10 logarithm of saturated hydraulic conductivity.
The pedotransfer functions in this package use the following units:
Length: | centimeter |
Time: | day |
Mass: | gram |
Melanie Weynants, Brigitta Tóth
Tóth Brigitta, Weynants Mélanie, Nemes Attila, Makó Andras, Bilas George and Tóth Gergely. 2014. New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science. doi:10.1111/ejss.12192.
Weynants M. et al. 2013. European Hydropedological Data Inventory (EU-HYDI). EUR Scientific and Technical Research Series. Luxembourg: Publication Office of the European Commission. 168p. doi: 10.2788/5936.
Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 89-98.
soilwaterptf
# load example data data(ptf.data) # generate texture classes ptf.data$TEXT_FAO_MOD <- psd2classFAO_MOD(ptf.data$USSAND, ptf.data$USSILT, ptf.data$USCLAY, ptf.data$OC, option=TRUE) ptf.data$TEXT_US <- psd2classUS(ptf.data$USSAND, ptf.data$USSILT, ptf.data$USCLAY, ptf.data$OC, option=TRUE) # predict saturated water content with PTF18 (modified FAO texture class and top/sub-soil distinction) ths_fao <- predict.ptf(ptf.data,"PTF18")[,"ths"] # predict field capacity with PTF19 (USDA texture class and top/sub-soil distinction) fc_usda <- predict.ptf(ptf.data,"PTF19",h=330)[,"theta",] # predict wilting point with PTF12 (particle size distribution and organic carbon content) wp_psd_OC <- predict.ptf(ptf.data,"PTF12")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.