#' Fitted \code{jointmeta1} object
#'
#' An object returned by the \code{jointmeta1} function, inheriting from class
#' \code{jointmeta1} and representing a fitted joint model for a single
#' longitudinal and a single time-to-event outcome for data from multiple
#' studies. Objects of this class have methods for the generic functions
#' \code{\link{confint}}, \code{\link{fixef}}, \code{\link{formula}} and
#' \code{\link{ranef}}. Additionally \code{\link[joineRmeta]{rancov}} allows
#' the user to extract the estimated covariance matrices for the zero mean
#' random effects.
#'
#' @author Maria Sudell (\email{mesudell@@liverpool.ac.uk})
#' @seealso \code{\link{jointmeta1}}.
#' @return A list with the following components. \describe{
#'
#' \item{\code{coefficients}}{a list with the estimated coefficients. The
#' components of this list are: \describe{
#'
#' \item{\code{fixed}}{the list of fixed effects for sub-models contained in
#' the joint model. The components of this list are: \describe{
#'
#' \item{\code{longitudinal}}{a data frame containing the estimated fixed
#' effect coefficients from the longitudinal sub-model}
#'
#'
#' \item{\code{survival}}{a numeric vector containing the estimated fixed
#' effect coefficients from the longitudinal sub-model}}}
#'
#' \item{\code{random}}{the list of estimates random effects estimated by the
#' joint model. The components of this list are: \describe{
#'
#' \item{\code{random_ind}}{a list of matrices of length equal to the number
#' of studies in the dataset. Each matrix has number of columns equal to the
#' number of individual level random effects, and number of rows equal to the
#' number of individuals in the study. As \code{jointmeta1} insists on the
#' presence of random effects at the individual level, this item will always
#' be present.}
#'
#' \item{\code{random_stud}}{a matrix with number of columns equal to the
#' number of study level random effects, number of rows equal to the number of
#' studies in the dataset. This item is only present if study level random
#' effects are specified in the model fit.}}}
#'
#' \item{\code{latent}}{a numeric containing the estimates of the latent
#' association parameters for each level of the random effects. The
#' association parameter for the individual level random effects is labelled
#' \code{gamma_ind_0}, and for the study level random effects is labelled
#' \code{gamma_stud_0}.}}}
#'
#' \item{\code{sigma.e}}{a numeric holding the estimate of the variance of the
#' measurement error variance}
#'
#' \item{\code{rand_cov}}{a list containing the covariance matrices for the
#' random effects included in the model. The covariance matrix for the
#' individual level random effects is labelled \code{D}. If study level
#' random effects are included in the model, the covariance matrix for the
#' study level random effects is also included in the list, labelled
#' \code{A}.}
#'
#' \item{\code{hazard}}{if \code{strat = FALSE} in the function call for
#' \code{jointmeta1} then this is a numeric vector containing the common
#' baseline across all studies. If \code{strat = TRuE} then this is a list of
#' numeric vectors, each of which is the baseline hazard for each study in the
#' dataset.}
#'
#' \item{\code{loglik}}{a list containing the overall likelihood for the joint
#' model (labelled \code{jointlhood}), and the portions of the likelihood
#' attributable to each sub-model (\code{jointy} for the longitudinal
#' component and \code{jointn} for the survival component).}
#'
#' \item{\code{numIter}}{the number of EM algorithm iterations completed
#' during the fitting of the joint model}
#'
#' \item{\code{convergence}}{a logical value, takes a value of \code{TRUE} if
#' convergence was achieved within the set maximum number of iterations,
#' \code{FALSE} otherwise.}
#'
#' \item{\code{sharingstrct}}{a character string denoting the specified
#' sharing structure used in the joint model. Currently only
#' \code{'randprop'} is supported, denoting zero mean random effects sharing
#' structure (see Wulfsohn and Tsiatis (1997)).}
#'
#' \item{\code{sepests}}{A list containing estimates from the separate
#' longitudinal and survival analyses. If separate results are not requested,
#' the elements of the list are set to 'No separate results requested'.
#' However, if separate analyses are requested in the \code{jointmeta1}
#' function call, the components of this list are: \describe{
#'
#' \item{\code{longests}}{a list containing estimates from the initial
#' longitudinal fit. The components of this list are: \describe{
#'
#' \item{\code{beta1}}{a data frame of the estimates of the fixed effects from
#' the longitudinal sub-model}
#'
#' \item{\code{sigma.e}}{the value of the variance of the measurement error
#' from the longitudinal sub-model}
#'
#' \item{\code{D}}{the estimate of the covariance matrix for the individual
#' level random effects. Individual level random effects are always included
#' in the joint model}
#'
#' \item{\code{A}}{the estimate of the covariance matrix for the study level
#' random effects. This is only present if study level random effects are
#' specified in the \code{jointmeta1} function call.}
#'
#' \item{\code{log.like.long}}{the numeric value of the log likelihood for the
#' initial longitudinal model.}
#'
#' \item{\code{randstart.ind}}{a list of the conditional modes of the
#' individual level random effects in each study given the data and the
#' estimates of the separate longitudinal model parameters}
#'
#' \item{\code{randstart.ind.cov}}{a list of the conditional covariance
#' matrices for each individual for the individual level random effects given
#' the data and the estimates of the separate longitudinal model parameters}
#'
#' \item{\code{randstart.stud}}{a data frame containing the conditional modes
#' of the study level random effects given the data and the estimates of the
#' separate longitudinal model parameters. This is only present if study
#' level random effects were specified in the \code{jointmeta1} function call.
#' }
#'
#' \item{\code{randstart.stud.cov}}{a list of conditional covariance matrices
#' for each study for the study level random effects given the data and the
#' estimates of the separate longitudinal model parameters. This is only
#' present if study level random effects were specified in the
#' \code{jointmeta1} function call.}
#'
#' \item{\code{modelfit}}{the initial longitudinal model fit. The model has
#' the same specification as the longitudinal sub-model for the joint model,
#' fitted using the \code{\link[lme4]{lmer}} function from package
#' \code{lme4}}
#'
#' }}
#'
#' \item{\code{survests}}{a list containing estimates from the initial
#' survival fit. The components of this list are: \describe{
#'
#' \item{\code{beta2}}{vector of the estimates of the fixed effects included
#' in the survival model.}
#'
#' \item{\code{haz}}{if \code{strat = TRUE} then this is a list of numeric
#' vectors of length equal to the number of studies in the dataset, giving the
#' study specific baseline hazard. If \code{strat = FALSE} then the baseline
#' is not stratified by study, and this is one numeric vector giving the
#' common baseline across studies.}
#'
#' \item{\code{rs}}{a counter to indicate the last how many unique event times
#' had occured by the individual's survival time - this is for use during
#' further calculation in the joint model EM algorithm. If a stratified
#' baseline this is a list of numerical vectors, whereas if the baseline is
#' not stratified this is a single numeric vector.}
#'
#' \item{\code{sf}}{the unique event times observed in the dataset. If a
#' stratified baseline this is a list of numerical vectors, whereas if the
#' baseline is not stratified this is a single numeric vector. }
#'
#' \item{\code{nev}}{a counter of the number of events that occur at each
#' event time.If a stratified baseline this is a list of numerical vectors,
#' whereas if the baseline is not stratified this is a single numeric vector.}
#'
#' \item{\code{log.like.surv}}{a numeric containing two values, the
#' log-likelihood with the initial values and the log-likelihood with the
#' final values, see \code{\link[survival]{coxph.object}}}
#'
#' \item{\code{modelfit}}{the initial survival model fit. The model has the
#' same specification as the survival sub-model for the joint model, fitted
#' using the \code{\link[survival]{coxph}} function from package
#' \code{survival}}
#'
#' }}
#'
#' }}
#'
#' \item{\code{sep.loglik}}{a list containing the log-likelihoods estimated
#' from the separate analyses. It contains three elements, namely
#' \code{seplhood} - the sum of the log-likelihoods from the separate
#' longitudinal and the separate survival analyses, \code{sepy} - the
#' log-likelihood from the separate longitudinal analysis, \code{sepn} - the
#' log-likelihood from the separate survival analysis.}
#'
#' \item{\code{data}}{the \code{\link[joineR]{jointdata}} object containing
#' the data the joint model was fitted to}
#'
#' \item{\code{call}}{the function call supplied to the \code{jointmeta1}
#' function.}
#'
#' \item{\code{numstudies}}{an integer containing the number of studies
#' present in the data used to fit the joint model}
#'
#' \item{\code{n.bystudy}}{a numeric vector containing the number of
#' individuals present in each study in the data used to fit the joint model.
#' This will be less than the number of individuals in the supplied dataset,
#' if missing data is present in variables included in the model.}
#'
#' \item{\code{missingids}}{the ids of any individuals excluded from the
#' analysis due to missing data}
#'
#' \item{\code{nobs}}{a table containing the number of longitudinal
#' measurements supplied by each study in the data used to fit the model. This
#' will be less than the number of longitudinal measurements in the dataset
#' supplied to the function call, if missing data is present in variables
#' included in the model}
#'
#' }
"jointmeta1.object" <- NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.