#' Extract the variance covariance matrix from the bootstrapped results
#'
#' Function applied to a \code{jointmeta1SE} object, the result of the
#' \code{jointmetaSE} function to extract the variance covariance matrix for the
#' estimated model parameters
#'
#' @param object an object of class \code{jointmeta1SE}
#' @param ... additional arguments; currently none are used.
#'
#' @return a variance covariance matrix for the fixed effects from the
#' longitudinal sub-model, the time-to-event sub-model, the association
#' parameters, the random effects and the error term.
#'
#' @export
#'
#' @seealso \code{\link{jointmeta1}}, \code{\link{jointmetaSE}},
#' \code{\link{jointmeta1SE.object}}
#'
#' @examples
#' #change example data to jointdata object
#' jointdat2<-tojointdata(longitudinal = simdat2$longitudinal,
#' survival = simdat2$survival, id = 'id',longoutcome = 'Y',
#' timevarying = c('time','ltime'),
#' survtime = 'survtime', cens = 'cens',time = 'time')
#'
#' #set variables to factors
#' jointdat2$baseline$study <- as.factor(jointdat2$baseline$study)
#' jointdat2$baseline$treat <- as.factor(jointdat2$baseline$treat)
#'
#' #fit multi-study joint model
#' #note: for demonstration purposes only - max.it restricted to 5
#' #model would need more iterations to truely converge
#' onestagefit<-jointmeta1(data = jointdat2, long.formula = Y ~ 1 + time +
#' + treat + study, long.rand.ind = c('int', 'time'),
#' long.rand.stud = c('treat'),
#' sharingstrct = 'randprop',
#' surv.formula = Surv(survtime, cens) ~ treat,
#' study.name = 'study', strat = TRUE, max.it=5)
#'
#' \dontrun{
#' #calculate the SE
#' onestagefitSE <- jointmetaSE(fitted = onestagefit, n.boot = 200)
#'
#' #extract the variance covariance matrix
#' vcov(onestagefitSE)
#' }
#'
vcov.jointmeta1SE <- function(object, ...) {
if (class(object) != "jointmeta1SE") {
stop("object should be of class jointmeta1SE")
}
object$covmat
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.