| fdqcs.depth | R Documentation | 
This function is used to compute statistics required by the DFD chart.
fdqcs.depth(x, ...)
## Default S3 method:
fdqcs.depth(
  x,
  data.name = NULL,
  func.depth = depth.mode,
  nb = 200,
  type = c("trim", "pond"),
  ns = 0.01,
  plot = TRUE,
  trim = 0.025,
  smo = 0.05,
  draw.control = NULL,
  ...
)
## S3 method for class 'fdqcd'
fdqcs.depth(
  x,
  func.depth = depth.mode,
  nb = 200,
  type = c("trim", "pond"),
  ns = 0.01,
  plot = TRUE,
  trim = 0.025,
  smo = 0.05,
  draw.control = NULL,
  ...
)
x | 
 An object of class 'fdqcd'.  | 
... | 
 Arguments passed to or from methods.  | 
data.name | 
 A string that specifies the title displayed on the plots. 
If not provided it is taken from the name of the object   | 
func.depth | 
 Type of depth measure, by default depth.mode.  | 
nb | 
 The number of bootstrap samples.  | 
type | 
 The method used to trim the data (trim or pond).  | 
ns | 
 Quantile to determine the cutoff from the Bootstrap procedure.  | 
plot | 
 Logical value. If   | 
trim | 
 The percentage of the trimming.  | 
smo | 
 The smoothing parameter for the bootstrap samples.  | 
draw.control | 
 It specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT.  | 
Flores, M.; Naya, S.; Fernández-Casal,R.; Zaragoza, S.; Raña, P.; Tarrío-Saavedra, J. Constructing a Control Chart Using Functional Data. Mathematics 2020, 8, 58.
## Not run: 
library(qcr)
m <- 30
tt<-seq(0,1,len=m)
mu<-30 * tt * (1 - tt)^(3/2)
n0 <- 100
set.seed(12345)
mdata<-matrix(NA,ncol=m,nrow=n0)
sigma <- exp(-3*as.matrix(dist(tt))/0.9)
for (i in 1:n0) mdata[i,]<- mu+0.5*mvrnorm(mu = mu,Sigma = sigma )
fdchart <- fdqcd(mdata)
plot.fdqcd(fdchart,type="l",col="gray")
set.seed(1234)
fddep <- fdqcs.depth(fdchart,plot = T)
plot(fddep,title.fdata = "Fdata",title.depth = "Depth")
summary(fddep)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.