fdqcs.depth | R Documentation |
This function is used to compute statistics required by the DFD chart.
fdqcs.depth(x, ...)
## Default S3 method:
fdqcs.depth(
x,
data.name = NULL,
func.depth = depth.mode,
nb = 200,
type = c("trim", "pond"),
ns = 0.01,
plot = TRUE,
trim = 0.025,
smo = 0.05,
draw.control = NULL,
...
)
## S3 method for class 'fdqcd'
fdqcs.depth(
x,
func.depth = depth.mode,
nb = 200,
type = c("trim", "pond"),
ns = 0.01,
plot = TRUE,
trim = 0.025,
smo = 0.05,
draw.control = NULL,
...
)
x |
An object of class 'fdqcd'. |
... |
Arguments passed to or from methods. |
data.name |
A string that specifies the title displayed on the plots.
If not provided it is taken from the name of the object |
func.depth |
Type of depth measure, by default depth.mode. |
nb |
The number of bootstrap samples. |
type |
The method used to trim the data (trim or pond). |
ns |
Quantile to determine the cutoff from the Bootstrap procedure. |
plot |
Logical value. If |
trim |
The percentage of the trimming. |
smo |
The smoothing parameter for the bootstrap samples. |
draw.control |
It specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT. |
Flores, M.; Naya, S.; Fernández-Casal,R.; Zaragoza, S.; Raña, P.; Tarrío-Saavedra, J. Constructing a Control Chart Using Functional Data. Mathematics 2020, 8, 58.
## Not run:
library(qcr)
m <- 30
tt<-seq(0,1,len=m)
mu<-30 * tt * (1 - tt)^(3/2)
n0 <- 100
set.seed(12345)
mdata<-matrix(NA,ncol=m,nrow=n0)
sigma <- exp(-3*as.matrix(dist(tt))/0.9)
for (i in 1:n0) mdata[i,]<- mu+0.5*mvrnorm(mu = mu,Sigma = sigma )
fdchart <- fdqcd(mdata)
plot.fdqcd(fdchart,type="l",col="gray")
set.seed(1234)
fddep <- fdqcs.depth(fdchart,plot = T)
plot(fddep,title.fdata = "Fdata",title.depth = "Depth")
summary(fddep)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.