# Metric for performance evaluation
#' Compute error
#'
#' This function calculates the Root Mean Square Error (RMSE). It takes as input
#' two vectors (or matrices) with one containing the real \eqn{y}'s and the other the
#' predicted \eqn{y}'s from the model.
#'
#' @param y Response data
#' @param ypred Mean of predicted responses
#' @return RMSE for the given data
#' @export
computeError <- function(y, ypred){
e = sqrt(mean((y-ypred)^2))
return(e)
}
#' Compute log-likelihood
#'
#' This function calculates the log-likelihood (LL). It takes as input
#' three vectors (or matrices) with one containing the real \eqn{y}'s, one with the
#' predicted \eqn{y}'s from the model and the last one with the variance of the \eqn{y}'s.
#'
#' @param y Response data
#' @param ypred Mean of predicted responses
#' @param Vpred Variance of the predicted responses
#' @return LL for the given data
#' @export
loglik <- function(y, ypred, Vpred){
d = ncol(y)
if (d==1){
LL = mean(-0.5*log(2*pi*Vpred) - (0.5*(y-ypred)^2)/Vpred)
}
return(LL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.