#' @title LEM+ dataset
#'
#' @name ref_sf
#'
#' @format
#' These datasets are objects of class `sf` (inherited from `tbl_df`,
#' `tbl`, `data.frame`) with 2 variables:
#' \itemize{
#' \item{`id`: identification}
#' \item{`geometry`: polygons}
#' }
#'
#' @source Oldoni et al. (2020) \doi{10.1016/j.dib.2020.106553}.
#'
#' @references
#' - Oldoni, L.V., Sanches, I.D.A., Picoli, M.C.A.,
#' Covre, R.M. and Fronza, J.G., 2020. LEM+ dataset: For
#' agricultural remote sensing applications.
#' Data in Brief, 33, p.106553.
NULL
#' @rdname ref_sf
#'
#' @description
#' `ref_sf`: a dataset containing field boundaries from Luiz Eduardo Magalhaes
#' municipality, Brazil.
#'
#' The data covers the following extent:
#' xmin: -46.37683 ymin: -12.34579 xmax: -46.15776 ymax: -12.13663
#' CRS: EPSG:4326
#'
#' @format
#' `ref_sf`: a dataset with 195 features.
#'
#' @examples
#' data("ref_sf", package = "segmetric")
"ref_sf"
#' @rdname ref_sf
#'
#' @description
#' `sample_ref_sf`: a subset of `ref_sf` dataset.
#'
#' @format
#' `sample_ref_sf`: a dataset with 5 features.
#'
#' @examples
#' data("sample_ref_sf", package = "segmetric")
"sample_ref_sf"
#' @title Segmentation dataset
#'
#' @name seg_sf
#'
#' @format
#' These datasets are objects of class `sf` (inherited from `tbl_df`,
#' `tbl`, `data.frame`) with 2 variables:
#' \itemize{
#' \item{`id`: identification}
#' \item{`geometry`: polygons}
#' }
#'
#' @references
#' - Planet Team, 2017. Planet Application Program
#' Interface: In Space for Life on Earth. San Francisco,
#' CA. <https://www.planet.com>
#'
#' - Baatz, M., Schape, A., 2000. Multiresolution
#' segmentation - an optimization approach for high
#' quality multi-scale image segmentation. In: Strobl, J.,
#' Blaschke, T., Griesebner, G. (Eds.), Angewandte
#' Geographische Informations-Verarbeitung XII.
#' Wichmann Verlag, Karlsruhe, Germany, pp. 12-23. <>
NULL
#' @rdname seg_sf
#'
#' @description
#' `seg200_sf`,`seg500_sf`,`seg800_sf`,`seg1000_sf`: a dataset containing
#' segments generated from PlanetScope image, level 3B, acquired on
#' Feb 18, 2020, with 3.7-meter resolution (Planet Team, 2017), using the
#' multiresolution segmentation method (Baatz and Schape, 2000).
#'
#' The data covers the approximately the same area of LEM+ dataset
#' (see \link{ref_sf}).
#'
#' The data was post-processed using the spectral difference algorithm on
#' band 3.
#'
#' The polygons were simplified using the Douglas-Peucker algorithm in QGIS.
#'
#' Self-intersections were removed using SAGA's Polygon Self-Intersection.
#'
#' Segmentation parameters:
#' \itemize{
#' \item{`scale parameter`: 200 (`seg200_sf`), 500 (`seg500_sf`),
#' 800 (`seg800_sf`), and 1000 (`seg1000_sf`)}
#' \item{`shape`: 0.9}
#' \item{`compactness`: 0.1}
#' }
#'
#' Spectral difference parameters:
#' \itemize{
#' \item{`spectral difference`: 20}
#' }
#'
#' Simplification parameter:
#' \itemize{
#' \item{`distance`: 10-meters}
#' }
#'
#' Only those polygons intersecting reference data with an area-perimeter ratio
#' above 25 were selected.
#'
#' @format
#' `seg200_sf`: a dataset with 547 features.
#' `seg500_sf`: a dataset with 215 features.
#' `seg800_sf`: a dataset with 169 features.
#' `seg1000_sf`: a dataset with 158 features.
#'
#' @examples
#' data("seg200_sf", package = "segmetric")
"seg200_sf"
#' @rdname seg_sf
#'
#' @examples
#' data("seg500_sf", package = "segmetric")
"seg500_sf"
#' @rdname seg_sf
#'
#' @examples
#' data("seg800_sf", package = "segmetric")
"seg800_sf"
#' @rdname seg_sf
#'
#' @examples
#' data("seg1000_sf", package = "segmetric")
"seg1000_sf"
#' @rdname seg_sf
#'
#' @description
#' `sample_seg_sf`: a subset of `seg_sf` dataset.
#'
#' @format
#' `sample_seg_sf`: a dataset with 6 features extracted from
#' `seg500_sf` dataset.
#'
#' @examples
#' data("sample_seg_sf", package = "segmetric")
"sample_seg_sf"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.