Description Usage Arguments Examples
For each prevalence interval it randomizes the samples labels into arbitrary groupings using n random permutations (user defined). For each, randomized and prevalence filtered, dataset the OOB error rate is calculated to estimate whether the original differences in groups of samples occur by chance. Results are in a list containing a table and a boxplot summarizing the results.
1 2 | pime.error.prediction(physeq, variable, bootstrap, max.prev,
parallel = TRUE)
|
physeq |
Input in phyloseq format, original data, |
variable |
Variable to run the model, to be randomized |
bootstrap |
Number to run randomizations |
max.prev |
Max prevalence reached with pime.prevalence() |
parallel |
Whether or not to run in parallel. Default is TRUE |
1 2 3 4 5 6 7 | phylist=pime.split.by.variable(restroom, "Environment")
prev=pime.prevalence(phylist)
pime.best.prevalence(prev, "Environment")
set.seed(42)
result=pime.error.prediction(restroom, "Environment", bootstrap=10, max.prev=90, parallel=TRUE)
result$Plot
result$'Results table'
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.