plotHistogram | R Documentation |
assay
, rowData
or colData
This methods visualizes abundances or variables from rowData
or
colData
.
plotHistogram(x, ...)
plotBarplot(x, ...)
## S4 method for signature 'SummarizedExperiment'
plotHistogram(
x,
assay.type = NULL,
features = NULL,
row.var = NULL,
col.var = NULL,
...
)
## S4 method for signature 'SummarizedExperiment'
plotBarplot(
x,
assay.type = NULL,
features = NULL,
row.var = NULL,
col.var = NULL,
...
)
x |
a
|
... |
Additional parameters for plotting.
|
assay.type |
|
features |
|
row.var |
|
col.var |
|
Histogram and bar plot are a basic visualization techniques in quality
control. It helps to visualize the distribution of data. plotAbundance
allows researcher to visualise the abundance from assay
, or variables
from rowData
or colData
. For visualizing categorical values,
one can utilize plotBarplot
.
plotAbundanceDensity
function is related
to plotHistogram
. However, the former visualizes the most prevalent
features, while the latter can be used more freely to explore the
distributions.
A ggplot2
object.
plotAbundanceDensity
scater::plotExpression
scater::plotRowData
scater::plotColData
data(GlobalPatterns)
tse <- GlobalPatterns
# Visualize the counts data. There are lots of zeroes.
plotHistogram(tse, assay.type = "counts")
# Apply transformation
tse <- transformAssay(tse, method = "clr", pseudocount = TRUE)
# And plot specified rows
plotHistogram(tse, assay.type = "clr", features = rownames(tse)[1:10])
# Calculate shannon diversity and visualize its distribution with density
# plot
tse <- addAlpha(tse, index = "shannon")
plotHistogram(tse, col.var = "shannon", layout = "density")
# For categorical values, one can utilize a bar plot
plotBarplot(tse, col.var = "SampleType")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.