library(dplyr)
library(data.table)
library(RNetCDF)
library(sf)
library(ncmeta)
library(intersectr)
devtools::load_all()

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  warning = FALSE,
  message = FALSE
)

Option 1: Intersectr:

intersectr_prep = function(file, geom, ID, variable){
  nc_coord_vars <- nc_coord_var(file)
  nc_coord_vars <- filter(nc_coord_vars, variable == !!variable)

  nc       <- open.nc(file)
  X_coords <- var.get.nc(nc, nc_coord_vars$X, unpack = TRUE)
  Y_coords <- var.get.nc(nc, nc_coord_vars$Y, unpack = TRUE)

  nc_prj <- nc_gm_to_prj(nc_grid_mapping_atts(file))

  cell_geometry = create_cell_geometry(X_coords = X_coords,
                         Y_coords = Y_coords,
                         prj = nc_prj,
                         geom = geom, 
                         buffer_dist = 0.1, # Degrees
                         regularize = TRUE)

  data_source_cells <- st_sf(dplyr::select(cell_geometry, grid_ids))
  target_polygons   <- st_sf(dplyr::select(geom, !!ID))
  st_agr(data_source_cells) <- "constant"
  st_agr(target_polygons)   <- "constant"

  area_weights = calculate_area_intersection_weights(data_source_cells, target_polygons, allow_lonlat = TRUE)

  return(list(grid = cell_geometry, w = area_weights, x = nc_coord_vars$X, y = nc_coord_vars$Y, t = nc_coord_vars$T))
}

Option 2: exactextract:

exactrextract_process = function(file, geom){
  r = suppressWarnings({ raster::stack(file) })
  r = crop(r, st_transform(geom, st_crs(r)), out = TRUE)
  exactextractr::exact_extract(r, geom, stack_apply = TRUE, fun = "mean", progress = FALSE)
}

Option 3: zonal:

zonal_full = function(file, geom, ID){
  w = weighting_grid(file, geom, ID, progress = FALSE)
  execute(file, w)
}

HUC01

The gridded data and aggregate units we are working with can be seen below:

file = '/Users/mjohnson/Downloads/pet_1979.nc'

geom <- read_sf('/Users/mjohnson/github/hydrofabric/workflow/nhd_workflows/cache/ngen_01a-4.gpkg', "catchments") %>% 
  st_make_valid()
system.time({
  intersectr_input = intersectr_prep(file, geom, ID = "comid", variable = 'potential_evapotranspiration')
})

system.time({
  zonal_w = weighting_grid(file, geom, ID = "comid", progress = FALSE)
})
bnch <- bench::mark(
  iterations = 1, check = FALSE,
  intersectr     =  execute_intersection(nc_file = file,
                       variable_name = 'potential_evapotranspiration',
                       intersection_weights = intersectr_input$w,
                       cell_geometry = intersectr_input$grid, 
                       x_var = intersectr_input$x,
                       y_var = intersectr_input$y,
                       t_var = intersectr_input$t, 
                       start_datetime = NULL, 
                       end_datetime = NULL),
  exactextractr  = exactrextract_process(file, geom),
  zonal_prestage_weights          = execute(file, zonal_w),
  zonal_full     = zonal_full(file, geom, "comid")
)
bnch %>%
  dplyr::select(expression, median, mem_alloc) %>%
  mutate(expression = names(expression),
         median_rel = unclass(median/min(median)),
         mem_rel = unclass(mem_alloc/min(mem_alloc))) %>% 
  formattable::formattable()

Colorado

The gridded data and aggregate units we are working with can be seen below:

file = '/Users/mjohnson/Downloads/pet_1979.nc'

geom <- AOI::aoi_get(state = "FL", county = "all")
system.time({
  intersectr_input = intersectr_prep(file, geom, ID = "name", variable = 'potential_evapotranspiration')
})

system.time({
  zonal_w = weighting_grid(file, geom, ID = "name", progress = FALSE)
})
bnch <- bench::mark(
  iterations = 1, check = FALSE,
  intersectr     =  execute_intersection(nc_file = file,
                       variable_name = 'potential_evapotranspiration',
                       intersection_weights = intersectr_input$w,
                       cell_geometry = intersectr_input$grid, 
                       x_var = intersectr_input$x,
                       y_var = intersectr_input$y,
                       t_var = intersectr_input$t, 
                       start_datetime = NULL, 
                       end_datetime = NULL),
  exactextractr  = exactrextract_process(file, geom),
  zonal_prestage_weights          = execute(file, zonal_w),
  zonal_full     = zonal_full(file, geom, "comid")
)
bnch %>%
  dplyr::select(expression, median, mem_alloc) %>%
  mutate(expression = names(expression),
         median_rel = unclass(median/min(median)),
         mem_rel = unclass(mem_alloc/min(mem_alloc))) %>% 
  formattable::formattable()


mikejohnson51/zonal documentation built on Nov. 4, 2024, 10:23 p.m.