knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(MATH4793LABStayl0048)
$\bar{x}k=\frac{1}{n}\sum{j=1}^{n}x_{jk}$
$s_{ik}=\frac{1}{n}*\sum_{j=1}^{n}(x_{ji}-\bar{x}{i})(x{jk}-\bar{x}_{k})$
$r_{ik}=\frac{s_{ik}}{\sqrt{s_{ii}}\sqrt{s_{kk}}}=\frac{\sum_{j=1}^{n}(x_{ji}-\bar{x}{i})(x{jk}-\bar{x}{k})}{\sqrt{{\sum{j=1}^{n}(x_{ji}-\bar{x}{i})^2}\sum{j=1}^{n}(x_{jk}-\bar{x}_{k})^2}}$
$\textbf{S}=\frac{1}{n-1}\textbf{X}^{'}(\textbf{I}-\frac{1}{n}\textbf{I I}^{'})\textbf{X}$
$$ \textbf{R}=\begin{bmatrix} \frac{s_{11}}{\sqrt{s_{11}}\sqrt{s_{11}}} & \frac{s_{12}}{\sqrt{s_{11}}\sqrt{s_{22}}} & . . . & \frac{s_{1p}}{\sqrt{s_{11}}\sqrt{s_{pp}}} \ . . . & . . . & . . .\ \frac{s_{1p}}{\sqrt{s_{11}}\sqrt{s_{pp}}} & \frac{s_{2p}}{\sqrt{s_{22}}\sqrt{s_{pp}}} & . . . & \frac{s_{pp}}{\sqrt{s_{pp}}\sqrt{s_{pp}}} \ \end{bmatrix}=\begin{bmatrix} 1 & r_{12} & ... & r_{1p} \ ... & ... & ... &...\ r_{1p} & r_{2p} & ... & 1 \ \end{bmatrix} \quad \quad $$
x=read.table("T1-2.DAT", header=TRUE)
ArrayMean(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.