An implementation of the mapper algorithm, as described in: G. Singh, F. Memoli, G. Carlsson (2007). Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, Point Based Graphics 2007, Prague, September 2007.
This implementation lets the user use: A filter of any dimension. Custom clustering algorithm.
To intall simply excecute:
# If you don't have devtools
# install.packages("devtools")
library(devtools)
install_github("minigonche/mapperKD")
library('mapperKD')
# Example
# ----------------
# Construct the data set
data_points = data.frame( x=c(cos(1:50) - 1, cos(1:50) + 1), y=sin(1:100) )
plot(data_points)
# Executes mapper
one_squeleton_result = mapperKD(k = 1,
distance = as.matrix(dist(data_points)),
filter = data_points$x,
intervals = c(12),
overlap = c(50),
clustering_method = hierarchical_clustering,
local_distance = FALSE,
data = NA)
# Visualize the result
g = convert_to_graph(one_squeleton_result)
V(g)$size = sqrt(get_1_esqueleton_node_sizes(one_squeleton_result)*30)
plot(g)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.