Man pages for mlesnoff/rnirs
Dimension reduction, Regression and Discrimination for Chemometrics

aicplsrAIC and Cp for PLSR1 Models
bcoefb-coefficients for PCR and PLSR models
blockplsBlock dimension reduction by PCA or PLS
blockscalBlock autoscaling
blockselBlock selection in a matrix
blocksoplsBlock dimension reduction by SO-PCA or SO-PLS
centrCenters of classes
checkduplFind and remove duplicated row observations between two data...
checknaFind and count NA values in a data set
covselCovSel
cppcaMallows's Cp for PCA Models
cvfitCross-validation of a prediction model
cvpca_iaCross-validation of a PCA model by Missing Data Imputation
dadisDA using the dissimilarity to class centers
daglmDA using GLIM Regression on the Y-Dummy table
dalmDA using Linear Regression on the Y-Dummy table
daprobProbabilistic DA (LDA and QDA)
darrDA using Ridge or Kernel Ridge Regression on the Y-Dummy...
dasdodDA using a SIMCA index
datcassdatcass
datforagesdatforages
datoctanedatoctane
datozonedatozone
dderivDerivation by finite difference
detrendDetrend transformation
dfpca_divDegrees of freedom of PCA Models
dfplsr_covDegrees of freedom of PLSR1 Models
disDissimilarities between row observations of a matrix and a...
dmnormProbability density prediction
dtaggregateSummary statistics with data subsets
dummyTable of dummy variables
fdaFactorial discriminant analysis
getknnkNN selection
headmReturn the first part of a matrix or data frame
inlrBlocks for INLR
kernelsKernel
kgramKernel Gram matrices
knnrKNN Regression and Discrimination
kplsNon Linear Kernel PCA and PLS
kplsdaNon linear kernel PCDA and PLSDA models
kpls_nipalsNon linear kernel PLS algorithm
kplsrNon linear kernel PCR and PLSR Models
krrNon Linear Kernel Ridge Regression
lmrMultiple Linear Regression Models
locwLocally weighted models
lwplsrKNN-LWPLSR & DA
matdisDissimilarity matrix (between observations)
matWBetween and within covariance matrices
mavgSmoothing by moving average
msePrediction error rates
odisOrthogonal distances from a PCA or PLS score space
orthogOrthogonalization of a matrix to another matrix
outstahOutlyingness measures
pca_robRobust PCA algorithms
pca_svdPCA algorithms
pinvMoore-Penrose pseudo-inverse of a matrix
plotjtJittered plot
plotslPlot of slopes of between elemnts of a vector
plotspPlotting spectra
plotxnaPlotting Missing Data in a Matrix
plotxy2-d scatter plot
plsPCA and PLS
plsdaPCDA and PLSDA
pls_iwRobust PLS1 algorithm (iterative Re-Weighting)
pls_kernelPLS algorithms
plsrPCR and PLSR Models
pls_robRobust PLS1 algorithm
rrLinear Ridge Regression
sampclasWithin-class sampling
sampdpDuplex sampling
sampksKennard-Stone sampling
savgolSavitzky-Golay smoothing
scordisScore distances (SD) in a PCA or PLS score space
segmkfSegments for cross-validation
selangleHeuristic selection of the dimension of a PCA or PLS model...
selbrokenHeuristic selection of the dimension of a PCA model with the...
selcollHeuristic selection of the dimension of a PCA or PLS model...
selhornHeuristic selection of the dimension of a PCA model with the...
selkaiserHeuristic selection of the dimension of a PCA model with the...
selkarlisHeuristic selection of the dimension of a PCA model with the...
selscreeScree plots for PCA or PLS
selsignHeuristic selection of the dimension of regression models...
selwikHeuristic selection of the dimension of PLSR models with a...
selwoldHeuristic selection of the dimension of a latent variable...
snvStandard normal variate transformation (SNV)
sourcedirSource R functions in a directory
splitparSplit a parameter value within an interval
stackavgStacking for predictions models
summSummary of the variables of a data set
svmrSVM Regression or Discrimination
wdistWeights for distances
xfitMatrix fitting from scores and loadings matrices and SSR...
ximputiaMissing Data Imputation using PCA and the Iterative Algorithm...
xinterpResampling of spectra by nterpolation methods
mlesnoff/rnirs documentation built on April 24, 2023, 4:17 a.m.