Create an object of class hdcd_control to supply parameters to hdcd
1 2 3 4 5 6 7 8 9 10 11 | hdcd_control(glasso_cv_inner = TRUE, glasso_cv_inner_lambda = NULL,
glasso_cv_inner_randomize_folds = FALSE, glasso_cv_inner_n_folds = 5,
glasso_cv_inner_lambda_stepsize = 0.1^0.1,
glasso_NA_method = "loh_wainwright_bias_correction",
glasso_standardize = TRUE, glasso_penalize_diagonal = FALSE,
classifier_oob = TRUE, section_search_min_points = 5,
section_search_stepsize = 0.5, random_forest_n_tree = 600,
random_forest_mtry = NULL, random_forest_sample_fraction = 1,
kNN_k = function(x) ceiling(sqrt(x)), wbs_n_segments = 100,
sbs_alpha = 1/sqrt(2), permutation_test = FALSE,
permutation_test_pvalue = 0.05, permutation_test_n = 400)
|
glasso_cv_inner |
Should change points be selected according to inner cross validation in the glassocd procedure. |
glasso_cv_inner_lambda |
Grid of values for lambda to be analyzed during inner cross validation. If NULL, values will be searched for iteratively |
glasso_cv_inner_randomize_folds |
Should inner folds be selected in a randomized fashion (instead of equispaced) |
glasso_cv_inner_n_folds |
Number of inner folds |
glasso_NA_method |
Method to be used for covariance estimation in the presence of missing values. One of
|
glasso_standardize |
Should values be be standardized before they are fed into the glasso? |
glasso_penalize_diagonal |
Should values on the diagonal of the precision matrix be penalized in the glasso? |
classifier_oob |
Does the (custom) classifier return oob predictions? |
section_search_stepsize |
Stepsize parameter for the section_search optimizer |
random_forest_n_tree |
n_tree parameter for Random Forest algorithm ranger |
random_forest_mtry |
mtry parameter for Random Forest algorithm ranger |
random_forest_sample_fraction |
sample_fraction parameter for Random Forest algorithm ranger |
kNN_k |
Number of nearest neighbors used for classification. Either a positive integer or a function that reuturns a positive integer given the number of total observations. |
wbs_n_segments |
Number of segments to be drawn for the WBS procedure |
sbs_alpha |
Decay parameter for the SBS procedure |
permutation_test |
should a permutation test be done (approximated) for model selection (only relevant for kNNcd and RFcd) |
permutation_test_pvalue |
pvalue threshold used in permutation test |
permutation_test_n |
number of permutations (approximations) in permutation test |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.