hdcd_control: Create an object of class hdcd_control to supply parameters...

Description Usage Arguments

View source: R/control.R

Description

Create an object of class hdcd_control to supply parameters to hdcd

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
hdcd_control(glasso_cv_inner = TRUE, glasso_cv_inner_lambda = NULL,
  glasso_cv_inner_randomize_folds = FALSE, glasso_cv_inner_n_folds = 5,
  glasso_cv_inner_lambda_stepsize = 0.1^0.1,
  glasso_NA_method = "loh_wainwright_bias_correction",
  glasso_standardize = TRUE, glasso_penalize_diagonal = FALSE,
  classifier_oob = TRUE, section_search_min_points = 5,
  section_search_stepsize = 0.5, random_forest_n_tree = 600,
  random_forest_mtry = NULL, random_forest_sample_fraction = 1,
  kNN_k = function(x) ceiling(sqrt(x)), wbs_n_segments = 100,
  sbs_alpha = 1/sqrt(2), permutation_test = FALSE,
  permutation_test_pvalue = 0.05, permutation_test_n = 400)

Arguments

glasso_cv_inner

Should change points be selected according to inner cross validation in the glassocd procedure.

glasso_cv_inner_lambda

Grid of values for lambda to be analyzed during inner cross validation. If NULL, values will be searched for iteratively

glasso_cv_inner_randomize_folds

Should inner folds be selected in a randomized fashion (instead of equispaced)

glasso_cv_inner_n_folds

Number of inner folds

glasso_NA_method

Method to be used for covariance estimation in the presence of missing values. One of loh_wainwright_bias_correction, pairwise or average. See accompanying paper for more details.

glasso_standardize

Should values be be standardized before they are fed into the glasso?

glasso_penalize_diagonal

Should values on the diagonal of the precision matrix be penalized in the glasso?

classifier_oob

Does the (custom) classifier return oob predictions?

section_search_stepsize

Stepsize parameter for the section_search optimizer

random_forest_n_tree

n_tree parameter for Random Forest algorithm ranger

random_forest_mtry

mtry parameter for Random Forest algorithm ranger

random_forest_sample_fraction

sample_fraction parameter for Random Forest algorithm ranger

kNN_k

Number of nearest neighbors used for classification. Either a positive integer or a function that reuturns a positive integer given the number of total observations.

wbs_n_segments

Number of segments to be drawn for the WBS procedure

sbs_alpha

Decay parameter for the SBS procedure

permutation_test

should a permutation test be done (approximated) for model selection (only relevant for kNNcd and RFcd)

permutation_test_pvalue

pvalue threshold used in permutation test

permutation_test_n

number of permutations (approximations) in permutation test


mlondschien/hdcd documentation built on Jan. 5, 2021, 11:26 p.m.