library(mlr3misc) library(utils) library(mlr3tuningspaces) library(data.table) source("R/bibentries.R") writeLines(toBibtex(bibentries), "references.bib") lgr::get_logger("mlr3")$set_threshold("warn") lgr::get_logger("bbotk")$set_threshold("warn") set.seed(0) options( datatable.print.nrows = 10, datatable.print.class = FALSE, datatable.print.keys = FALSE, datatable.print.trunc.cols = TRUE, width = 100) # mute load messages library(bbotk) library(mlr3verse) library(mlr3hyperband) library(mlr3learners)
Package website: release | dev
mlr3hyperband adds the optimization algorithms Successive Halving [@jamieson_2016] and Hyperband [@li_2018] to the mlr3 ecosystem. The implementation in mlr3hyperband features improved scheduling and parallelizes the evaluation of configurations. The package includes tuners for hyperparameter optimization in mlr3tuning and optimizers for black-box optimization in bbotk.
There are several sections about hyperparameter optimization in the mlr3book.
The gallery features a series of case studies on Hyperband.
Install the last release from CRAN:
install.packages("mlr3hyperband")
Install the development version from GitHub:
remotes::install_github("mlr-org/mlr3hyperband")
We optimize the hyperparameters of an XGBoost model on the Sonar data set.
The number of boosting rounds nrounds
is the fidelity parameter.
We tag this parameter with "budget"
in the search space.
library(mlr3hyperband) library(mlr3learners) learner = lrn("classif.xgboost", nrounds = to_tune(p_int(27, 243, tags = "budget")), eta = to_tune(1e-4, 1, logscale = TRUE), max_depth = to_tune(1, 20), colsample_bytree = to_tune(1e-1, 1), colsample_bylevel = to_tune(1e-1, 1), lambda = to_tune(1e-3, 1e3, logscale = TRUE), alpha = to_tune(1e-3, 1e3, logscale = TRUE), subsample = to_tune(1e-1, 1) )
We use the tune()
function to run the optimization.
instance = tune( tnr("hyperband", eta = 3), task = tsk("pima"), learner = learner, resampling = rsmp("cv", folds = 3), measures = msr("classif.ce") )
The instance contains the best-performing hyperparameter configuration.
instance$result
The archive contains all evaluated hyperparameter configurations.
Hyperband adds the "stage"
and "braket"
.
as.data.table(instance$archive)[, .(stage, bracket, classif.ce, nrounds)]
We fit a final model with optimized hyperparameters to make predictions on new data.
learner$param_set$values = instance$result_learner_param_vals learner$train(tsk("sonar"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.