test_that("save/plot/serialize works kerasff", {
skip_on_os("solaris")
tmphd5 = tempfile(fileext = ".hd5")
tmprds = tempfile(fileext = ".rds")
# Can be saved
learner = mlr3::lrn("classif.kerasff")
tsk = mlr_tasks$get("iris")
learner$train(tsk)
learner$save(tmphd5)
expect_file_exists(tmphd5)
prd = learner$predict(tsk)
expect_class(prd, "Prediction")
# Plot works before serialization
p = learner$plot()
expect_class(p, "ggplot")
expect_true(1 %in% p$data$epoch)
# Learner can be serialized
saveRDS(learner, tmprds)
expect_file_exists(tmprds)
# And read back in
lrn2 = readRDS(tmprds)
expect_learner(lrn2)
expect_list(lrn2$model)
# We can also load model again and predict
lrn2$load_model_from_file(tmphd5)
prd2 = lrn2$predict(tsk)
expect_class(prd2, "Prediction")
expect_true(all(prd$response == prd2$response))
# Plot works before serialization
p2 = lrn2$plot()
expect_class(p2, "ggplot")
expect_true(1 %in% p2$data$epoch)
unlink(tmphd5, force = TRUE)
unlink(tmprds, force = TRUE)
k_clear_session()
})
test_that("keras architecture properties", {
skip_on_os("solaris")
arch = KerasArchitecture$new()
expect_r6(arch, "KerasArchitecture")
expect_error(arch$transforms$y())
arch = KerasArchitecture$new(y_transform = function() {1})
expect_r6(arch, "KerasArchitecture")
expect_true(arch$transforms$y() == 1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.