test_that("autotest classif tabnet", {
skip_on_os("solaris")
skip_if_not(reticulate::py_module_available("tabnet"))
learner = LearnerClassifTabNet$new()
learner$param_set$values$epochs = 3L
expect_learner(learner)
result = run_autotest(learner, exclude = "(feat_single|sanity)", check_replicable = FALSE)
expect_true(result, info = result$error)
k_clear_session()
})
test_that("autotest classif stacked tabnet", {
skip_on_os("solaris")
skip_if_not(reticulate::py_module_available("tabnet"))
learner = LearnerClassifTabNet$new()
learner$param_set$values$epochs = 3L
learner$param_set$values$stacked = TRUE
learner$param_set$values$num_layers = 2L
expect_learner(learner)
result = run_autotest(learner, exclude = "(feat_single|sanity)", check_replicable = FALSE)
expect_true(result, info = result$error)
k_clear_session()
})
test_that("autotest regr tabnet", {
skip_on_os("solaris")
skip_if_not(reticulate::py_module_available("tabnet"))
learner = LearnerRegrTabNet$new()
learner$param_set$values$epochs = 3L
expect_learner(learner)
result = run_autotest(learner, exclude = "(feat_single|sanity)", check_replicable = FALSE)
expect_true(result, info = result$error)
k_clear_session()
})
test_that("test tabnet on pima", {
skip_on_os("solaris")
skip_if_not(reticulate::py_module_available("tabnet"))
skip_if_not(require("mlr3pipelines"))
po_enc = PipeOpImputeMedian$new()
po_lrn = PipeOpLearner$new(lrn("classif.tabnet"))
po_lrn$param_set$values$epochs = 3L
pipe = po_enc %>>% po_lrn
expect_true(!pipe$is_trained)
expect_warning(pipe$train(mlr_tasks$get("pima")), "feature_dim")
expect_true(pipe$is_trained)
prd = pipe$predict(mlr_tasks$get("pima"))
expect_class(prd[[1]], "PredictionClassif")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.