mlr_tuners_irace | R Documentation |
Subclass for iterated racing.
Calls irace::irace()
from package irace.
This Tuner can be instantiated with the associated sugar function tnr()
:
tnr("irace")
n_instances
integer(1)
Number of resampling instances.
For the meaning of all other parameters, see irace::defaultScenario()
. Note
that we have removed all control parameters which refer to the termination of
the algorithm. Use bbotk::TerminatorEvals instead. Other terminators do not work
with TunerIrace
.
The ArchiveBatchTuning holds the following additional columns:
"race"
(integer(1)
)
Race iteration.
"step"
(integer(1)
)
Step number of race.
"instance"
(integer(1)
)
Identifies resampling instances across races and steps.
"configuration"
(integer(1)
)
Identifies configurations across races and steps.
The tuning result (instance$result
) is the best-performing elite of the final race.
The reported performance is the average performance estimated on all used instances.
$optimize()
supports progress bars via the package progressr
combined with a bbotk::Terminator. Simply wrap the function in
progressr::with_progress()
to enable them. We recommend to use package
progress as backend; enable with progressr::handlers("progress")
.
All Tuners use a logger (as implemented in lgr) from package
bbotk.
Use lgr::get_logger("bbotk")
to access and control the logger.
This Tuner is based on bbotk::OptimizerBatchIrace which can be applied on any black box optimization problem. See also the documentation of bbotk.
There are several sections about hyperparameter optimization in the mlr3book.
Getting started with hyperparameter optimization.
An overview of all tuners can be found on our website.
Tune a support vector machine on the Sonar data set.
Learn about tuning spaces.
Estimate the model performance with nested resampling.
Learn about multi-objective optimization.
Simultaneously optimize hyperparameters and use early stopping with XGBoost.
Automate the tuning.
The gallery features a collection of case studies and demos about optimization.
Learn more advanced methods with the Practical Tuning Series.
Learn about hotstarting models.
Run the default hyperparameter configuration of learners as a baseline.
Use the Hyperband optimizer with different budget parameters.
The cheatsheet summarizes the most important functions of mlr3tuning.
mlr3tuning::Tuner
-> mlr3tuning::TunerBatch
-> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchIrace
new()
Creates a new instance of this R6 class.
TunerBatchIrace$new()
optimize()
Performs the tuning on a TuningInstanceBatchSingleCrit until termination. The single evaluations and the final results will be written into the ArchiveBatchTuning that resides in the TuningInstanceBatchSingleCrit. The final result is returned.
TunerBatchIrace$optimize(inst)
inst
(TuningInstanceBatchSingleCrit).
data.table::data.table.
clone()
The objects of this class are cloneable with this method.
TunerBatchIrace$clone(deep = FALSE)
deep
Whether to make a deep clone.
Lopez-Ibanez M, Dubois-Lacoste J, Caceres LP, Birattari M, Stuetzle T (2016). “The irace package: Iterated racing for automatic algorithm configuration.” Operations Research Perspectives, 3, 43–58. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1016/j.orp.2016.09.002")}.
Other Tuner:
Tuner
,
mlr_tuners
,
mlr_tuners_cmaes
,
mlr_tuners_design_points
,
mlr_tuners_gensa
,
mlr_tuners_grid_search
,
mlr_tuners_internal
,
mlr_tuners_nloptr
,
mlr_tuners_random_search
# retrieve task
task = tsk("pima")
# load learner and set search space
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))
# runtime of the example is too long
# hyperparameter tuning on the pima indians diabetes data set
instance = tune(
tuner = tnr("irace"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 200
)
# best performing hyperparameter configuration
instance$result
# all evaluated hyperparameter configuration
as.data.table(instance$archive)
# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(task)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.