R/TuningInstanceSingleCrit.R

Defines functions autoplot.TuningInstanceSingleCrit

Documented in autoplot.TuningInstanceSingleCrit

#' @title Plots for Tuning Instances
#'
#' @description
#' Visualizations for [mlr3tuning::TuningInstanceSingleCrit].
#' The argument `type` controls what kind of plot is drawn.
#' Possible choices are:
#'
#'   * `"marginal"` (default): Scatter plots of x versus y.
#'      The color of the points shows the batch number.
#'   * `"performance"`: Scatter plots of batch number versus y
#'   * `"parameter"`: Scatter plots of batch number versus input.
#'      The color of the points shows the y values.
#'   * `"parallel"`: Parallel coordinates plot.
#'      hyperparameters are rescaled by `(x - mean(x)) / sd(x)`.
#'   * `"points"`: Scatter plot of two x dimensions versus.
#'      The color of the points shows the y values.
#'   * `"surface"`: Surface plot of two x dimensions versus y values.
#'     The y values are interpolated with the supplied [mlr3::Learner].
#'   * `"pairs"`: Plots all x and y values against each other.
#'
#' @param object ([mlr3tuning::TuningInstanceSingleCrit].
#' @template param_type
#' @param cols_x (`character()`)\cr
#'  Column names of hyperparameters.
#'  By default, all untransformed hyperparameters are plotted.
#'  Transformed hyperparameters are prefixed with `x_domain_`.
#' @param trafo (`logical(1)`)\cr
#'  If `FALSE` (default), the untransformed hyperparameters are plotted.
#'  If `TRUE`, the transformed hyperparameters are plotted.
#' @param learner ([mlr3::Learner])\cr
#'   Regression learner used to interpolate the data of the surface plot.
#' @param grid_resolution (`numeric()`)\cr
#'   Resolution of the surface plot.
#' @template param_theme
#' @param ... (ignored).
#'
#' @return [ggplot2::ggplot()].
#'
#' @export
#' @examples
#' if (requireNamespace("mlr3tuning") && requireNamespace("patchwork")) {
#'   library(mlr3tuning)
#'
#'   learner = lrn("classif.rpart")
#'   learner$param_set$values$cp = to_tune(0.001, 0.1)
#'   learner$param_set$values$minsplit = to_tune(1, 10)
#'
#'   instance = TuningInstanceSingleCrit$new(
#'     task = tsk("iris"),
#'     learner = learner,
#'     resampling = rsmp("holdout"),
#'     measure = msr("classif.ce"),
#'     terminator = trm("evals", n_evals = 10))
#'
#'   tuner = tnr("random_search")
#'
#'   tuner$optimize(instance)
#'
#'   # plot performance versus batch number
#'   autoplot(instance, type = "performance")
#'
#'   # plot cp values versus performance
#'   autoplot(instance, type = "marginal", cols_x = "cp")
#'
#'   # plot transformed parameter values versus batch number
#'   autoplot(instance, type = "parameter", trafo = TRUE)
#'
#'   # plot parallel coordinates plot
#'   autoplot(instance, type = "parallel")
#'
#'   # plot pairs
#'   autoplot(instance, type = "pairs")
#' }
autoplot.TuningInstanceSingleCrit = function(object, type = "marginal", cols_x = NULL, trafo = FALSE, learner = mlr3::lrn("regr.ranger"), grid_resolution = 100, theme = theme_minimal(), ...) {
  autoplot.OptimInstanceSingleCrit(object = object, type = type, cols_x = cols_x, trafo = trafo, learner = learner, grid_resolution = grid_resolution, theme = theme, ...)
}
mlr-org/mlr3viz documentation built on Feb. 2, 2023, 12:06 p.m.