Description Custom mlr3 defaults Dictionary Super classes Methods See Also Examples
Regression gradient boosting machine models.
Calls gbm::gbm() from package gbm.
keep_data:
Actual default: TRUE
Adjusted default: FALSE
 Reason for change: keep_data = FALSE saves memory during model fitting.
n.cores:
Actual default: NULL
Adjusted default: 1
 Reason for change: Suppressing the automatic internal parallelization if
cv.folds > 0.
This Learner can be instantiated via the
dictionary mlr_learners or with the associated
sugar function lrn():
1 2  | mlr_learners$get("regr.gbm")
lrn("regr.gbm")
 | 
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGBM
new()Creates a new instance of this R6 class.
LearnerRegrGBM$new()
importance()The importance scores are extracted by gbm::relative.influence() from
the model.
LearnerRegrGBM$importance()
Named numeric().
clone()The objects of this class are cloneable with this method.
LearnerRegrGBM$clone(deep = FALSE)
deepWhether to make a deep clone.
Dictionary of Learners: mlr3::mlr_learners
1 2 3 4 5 6 7  | if (requireNamespace("gbm")) {
  learner = mlr3::lrn("regr.gbm")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.