Description Custom mlr3 defaults Dictionary Super classes Methods See Also Examples
L2-Regularized L1-Loss support vector regression learner. Calls
LiblineaR::LiblineaR()
(type = 13
) from package LiblineaR.
svr_eps
:
Actual default: NULL
Adjusted default: 0.001
Reason for change: svr_eps
is type dependent and the "type" is handled
by the mlr3learner. The default value is set to th default of the respective
"type".
epsilon
:
Actual default: 0.01
Adjusted default: Removed
Reason for change: For regr SVR learners paramter svr_eps
overwrites
param epsilon
.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
1 2 | mlr_learners$get("regr.liblinearl2l1svr")
lrn("regr.liblinearl2l1svr")
|
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrLiblineaRL2L1SVR
new()
Creates a new instance of this R6 class.
LearnerRegrLiblineaRL2L1SVR$new()
clone()
The objects of this class are cloneable with this method.
LearnerRegrLiblineaRL2L1SVR$clone(deep = FALSE)
deep
Whether to make a deep clone.
Dictionary of Learners: mlr3::mlr_learners
1 2 3 4 5 | learner = mlr3::lrn("regr.liblinearl2l1svr")
print(learner)
# available parameters:
learner$param_set$ids()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.